Log In

All IPs > Automotive > CAN

Automotive CAN Semiconductor IP Solutions

The automotive industry relies heavily on effective communication networks to ensure the seamless operation of various vehicle systems. At the heart of these networks is the Controller Area Network (CAN), a robust vehicle bus standard that allows microcontrollers and devices to communicate with each other without a host computer. Our Automotive CAN semiconductor IP category offers specialized solutions that meet these specific communication needs, ensuring reliable and efficient data exchange in automotive environments.

CAN semiconductor IPs are essential for developing advanced driver-assistance systems (ADAS), powertrain operations, infotainment systems, and other critical automotive functions. These IPs provide designers with highly optimized core architectures that support high-speed, real-time data transfer with minimal latency and error rates. The IPs are designed to be adaptable, supporting a myriad of applications ranging from electric vehicle management systems to complex networked automotive functions.

In this category, you'll find a wide assortment of semiconductor IPs tailored for various CAN protocols, including CAN FD (Flexible Data-rate) and classical CAN networks. These IPs support features such as error handling, message prioritization, and arbitration, which are crucial for maintaining the system's integrity and operational efficiency. With advancements in automotive technology, CAN semiconductor IPs are continuously evolving to support higher data rates and enhanced security features to safeguard vehicle communication networks.

Whether you are developing new automotive systems or upgrading existing networks, our CAN semiconductor IP offerings provide the necessary tools to enhance functionality and performance. By leveraging our robust IP solutions, automotive manufacturers can achieve higher reliability and efficiency in vehicle communication, paving the way for smarter and more connected vehicles. Explore our portfolio to find the semiconductor IPs that best fit your automotive project needs.

All semiconductor IP

ADAS and Autonomous Driving

KPIT is pioneering advancements in autonomous driving and ADAS, providing innovative solutions to address formidable challenges in vehicle autonomy. The technology focuses on enabling Level 3 and beyond autonomy by overcoming obstacles such as safety benchmarks, feature development, and AI capabilities. KPIT seeks to close the gap in validation techniques by offering robust frameworks that encompass a wide range of driving scenarios, ensuring comprehensive and accurate system testing. Integrating AI-driven solutions, the IP bolsters autonomous capability beyond mere perception, ensuring that automakers can deliver vehicles safety-compliant and consumer-ready.

KPIT Technologies
CAN
View Details

EW6181 GPS and GNSS Silicon

The EW6181 is an advanced multi-GNSS silicon solution designed for high sensitivity and precision. This powerful chip supports GPS, Glonass, BeiDou, Galileo, SBAS, and A-GNSS, offering integration flexibility with various applications. Its built-in RF frontend and digital baseband facilitate robust signal processing, controlled by an ARM MCU. The EW6181 integrates essential interfaces for diverse connectivity, matched with DC-DC converters and LDOs to minimize BOM in battery-driven setups. This silicon marries low power demands with strong functional capabilities, thanks to proprietary algorithms that optimize its operation. It’s engineered to deliver exceptional accuracy and sensitivity in both standalone and cloud-related environments, adapting smoothly to connected ecosystems for enhanced efficiency. Its compact silicon footprint further enhances its suitability for applications needing prolonged battery life and reliable positioning. With a focus on Antenna Diversity, the EW6181 shines in dynamic applications like action cameras and smartwatches, ensuring clear signal reception even when devices rapidly rotate. This aspect accentuates the chip's ability to maintain consistent performance across a range of challenging environments, reinforcing its role in the forefront of GNSS technology.

EtherWhere Corporation
All Foundries
7nm
3GPP-5G, AI Processor, ATM / Utopia, Bluetooth, CAN, CAN XL, CAN-FD, Fibre Channel, FlexRay, GPS, JESD 204A / JESD 204B, OBSAI, Optical/Telecom, Photonics, RF Modules, USB, W-CDMA
View Details

aiSim 5

aiSim 5 is a state-of-the-art automotive simulation platform designed for ADAS and autonomous driving testing. Recognized as the world's first ISO26262 ASIL-D certified simulator, it offers unparalleled accuracy and determinism in simulating various driving scenarios and environmental conditions. The simulator integrates AI-based digital twin technology and an advanced rendering engine to create realistic traffic scenarios, helping engineers verify and validate driver assistance systems. Harnessing powerful physics-based simulation capabilities, aiSim 5 replicates real-world phenomena like weather effects and complex traffic dynamics with precision. By offering a comprehensive set of 3D assets and scenarios, it allows for the extensive testing of systems in both typical and edge conditions. With its flexible and open architecture, aiSim 5 can seamlessly integrate into existing testing toolchains, supporting significant variations in sensor configurations and driving algorithms. The platform encourages innovation in simulation methodologies by providing tools for scenario randomization and synthetic data generation, crucial for developing resilient ADAS applications. Additionally, its cloud-ready architecture makes it applicable across various hardware platforms, turning simulation into a versatile resource available on inexpensive or high-end computing configurations alike.

aiMotive
24 Categories
View Details

CANmodule-III

The CANmodule-III is a sophisticated full CAN controller designed to handle communication on the CAN bus with outstanding efficiency. Built upon Bosch's fundamental CAN architecture, this module is fully CAN 2.0B compliant, facilitating seamless communication transactions across the network. It is optimized for system-on-chip integrations, providing customizable options to cater to specific application requirements. The module stands out with its inherited functions which ensure uninterrupted main core operations, even when additional functionalities are layered around it. Having been deployed in various applications from aerospace to industrial control, the CANmodule-III's proven reliability makes it a preferred choice for developers seeking robust communication solutions in FPGA and ASIC technologies.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

Time-Triggered Protocol

The Time-Triggered Protocol (TTP) designed by TTTech is an advanced communication protocol meant to enhance the reliability of data transmission in critical systems. Developed in compliance with the SAE AS6003 standard, this protocol is ideally suited for environments requiring synchronized operations, such as aeronautics and high-stakes energy sectors. TTP allows for precise scheduling of communication tasks, creating a deterministic communication environment where the timing of data exchanges is predictable and stable. This predictability is crucial in eliminating delays and minimizing data loss in safety-critical applications. The protocol lays the groundwork for robust telecom infrastructures in airplanes and offers a high level of system redundancy and fault tolerance. TTTech’s TTP IP core is integral to their TTP-Controller ASICs and is designed to comply with stringent integrity and safety requirements, including those outlined in RTCA DO-254 / EUROCAE ED-80. The versatility of TTP allows it to be implemented across varying FPGA platforms, broadening its applicability to a wide range of safety-critical industrial systems.

TTTech Computertechnik AG
AMBA AHB / APB/ AXI, CAN, CAN XL, CAN-FD, Ethernet, FlexRay, LIN, MIPI, Processor Core Dependent, Safe Ethernet, Temperature Sensor
View Details

D2D® Technology - Direct-to-Data RF Conversion

D2D® Technology, developed by ParkerVision, is a revolutionary approach to RF conversion that transforms how wireless communication operates. This technology eliminates traditional intermediary stages, directly converting RF signals to digital data. The result is a more streamlined and efficient communication process that reduces complexity and power consumption. By bypassing conventional analog-to-digital conversion steps, D2D® achieves higher data accuracy and reliability. Its direct conversion approach not only enhances data processing speeds but also minimizes energy usage, making it an ideal solution for modern wireless devices that demand both performance and efficiency. ParkerVision's D2D® technology continues to influence a broad spectrum of wireless applications. From improving the connectivity in smartphones and wearable devices to optimizing signal processing in telecommunication networks, D2D® is a cornerstone of ParkerVision's technological offerings, illustrating their commitment to advancing communication technology through innovative RF solutions.

ParkerVision, Inc.
3GPP-5G, 3GPP-LTE, 802.11, A/D Converter, AMBA AHB / APB/ AXI, CAN, Coder/Decoder, Digital Video Broadcast, Platform Security, PLL, Receiver/Transmitter, RF Modules, USB, UWB, W-CDMA
View Details

LightningBlu - High-Speed Rail Connectivity

LightningBlu is a state-of-the-art multi-gigabit connectivity solution for high-speed rail networks, delivering continuous high-speed data transfer between trackside and train systems. This innovative solution works within the mmWave spectrum of 57-71 GHz and is certified for long-term, low-maintenance deployment. It seamlessly integrates with existing trackside networks to provide a stable, high-capacity communication bridge essential for internet access, entertainment, and real-time information services aboard high-speed trains. The LightningBlu system includes robust trackside nodes and compact train-top nodes designed for seamless installation, significantly enhancing operational efficiencies and passenger experience by providing internet speeds superior to traditional mobile broadband services. With aggregate throughputs reaching around 3 Gbps, LightningBlu sets the standard for rail communications by supporting speeds at which data demands are met with ease. Crucially, LightningBlu is a key component in transforming the railway telecommunications landscape, offering upgraded technology that enables uninterrupted and enhanced passenger digital services even in the busiest railways across the UK and USA. Through its advanced mmWave technology, it ensures that the connectivity needs of the modern commuter are met consistently and effectively, paving the way for a new era in transit communication.

Blu Wireless Technology Ltd.
GLOBALFOUNDRIES, TSMC
28nm, 180nm
3GPP-5G, 3GPP-LTE, 802.16 / WiMAX, Bluetooth, CAN, Digital Video Broadcast, Ethernet, Gen-Z, I2C, Optical/Telecom, RF Modules, UWB, V-by-One, W-CDMA, Wireless Processor
View Details

RFicient chip for IoT

The RFicient chip is designed for the Internet of Things (IoT) applications, famously recognized for its ultra-low-power operations. It aims to innovate the IoT landscape by offering a highly efficient receiver technology that significantly reduces power consumption. This chip supports energy harvesting to ensure sustainable operation and contributes to green IoT development by lessening the dependency on traditional power sources. Functionally, the RFicient chip enhances IoT devices' performance by providing cutting-edge reception capabilities, which allow for the consistent and reliable transmission of data across varied environments. This robustness makes it ideal for applications in industrial IoT settings, including smart cities and agricultural monitoring, where data integrity and longevity are crucial. Technically advanced, the RFicient chip's architecture employs intelligent design strategies that leverage low-latency responses in data processing, making it responsive and adaptable to rapid changes in its operational environment. These characteristics position it as a versatile solution for businesses aiming to deploy IoT networks with minimal environmental footprint and extended operational lifespan.

Fraunhofer Institute for Integrated Circuits IIS
GLOBALFOUNDRIES, Intel Foundry
40/45nm, 250nm
3GPP-5G, 3GPP-LTE, AI Processor, CAN, CAN XL, CAN-FD, Coprocessor, DSP Core, FlexRay, GPS, IoT Processor, LIN, OBSAI, Power Management, UWB, W-CDMA, Wireless Processor, Wireless USB
View Details

L5-Direct GNSS Receiver

OneNav presents the innovative L5-direct GNSS Receiver, a specialized component drawing focus to accuracy and reliability by operating independently of the L1 signal. Leveraging L5 Band signals, this receiver captures and maintains precise location data while ensuring protection against signal jamming. Incorporating a single RF chain, the system reduces redundancy and facilitates optimal antenna placement to enhance device designs in space-restricted environments. This approach critically lowers system costs while delivering robust, reliable location tracking ideal for wearables and IoT applications. The L5-direct receiver integrates seamlessly across multiple satellite constellations like GPS, Galileo, QZSS, and BeiDou, delivering accurate data regardless of environmental constraints. Its refinement in multipath error reduction through machine learning ensures the most precise data acquisition, even in dense urban landscapes. Enhanced with Application Specific Array Processor, the receiver accelerates signal acquisition without sacrificing time or power, ensuring reliable operation wherever used. Additionally, L5-direct GNSS stands out by optimizing power usage, with solutions designed specifically for extended battery life in ultra-low-power devices. Its adaptability allows for integration into diverse systems, serving industries with requirements across different geographies or use cases—from standalone GNSS ASICs to flexible modems and application processors. Featuring silicon-proven capabilities, such as a hot start fix in under one second and open-sky accuracy within 1.5 meters, L5-direct GNSS leads the way for next-generation technology in critical mission deployments.

oneNav, Inc.
GLOBALFOUNDRIES, TSMC
22nm FDX, 28nm
ADPCM, AI Processor, Bluetooth, CAN, Ethernet, GPS, Processor Core Independent, Security Protocol Accelerators, Wireless Processor
View Details

DB9000AXI Display Controller

The DB9000AXI Display Controller is engineered to interface seamlessly with Frame Buffer Memory via the AMBA AXI protocol, offering support for a wide range of display resolutions from basic QVGA up to advanced 8K panels. Besides baseline display capabilities, advanced versions feature enhanced processing attributes such as multiple overlay windows, hardware cursor functions, and high dynamic range (HDR) imaging. With features like Color Space Conversion and programmable resolution settings, this IP core meets diverse display demands across numerous applications.

Digital Blocks
AMBA AHB / APB/ AXI, CAN, Clock Generator, CRT Controller, GPU, LCD Controller, Peripheral Controller, RapidIO, Receiver/Transmitter
View Details

ArrayNav Adaptive GNSS Solution

ArrayNav is at the forefront of GNSS enhancements, utilizing multiple antennas to improve the sensitivity and performance of navigation systems. This sophisticated technology significantly boosts GNSS accuracy in challenging environments such as urban canyons. By leveraging up to four antennas, ArrayNav mitigates multipath issues and strengthens signal reception, dramatically enhancing performance. The heart of ArrayNav's innovation lies in its ability to filter out unwanted signals like interference or jamming attempts, ensuring the precision of GNSS operations. As each antenna adds unique benefits, this system ensures reliable navigation across diverse scenarios, whether in open areas or densely constructed urban landscapes. ArrayNav's technology is pivotal in the automotive sector, especially within advanced driver-assistance systems (ADAS). By providing sharper, more reliable positioning data, it contributes to improved safety and efficiency in vehicular systems, showcasing its indispensable role in modern navigation.

EtherWhere Corporation
3GPP-5G, Arbiter, Bluetooth, CAN, CAN-FD, FlexRay, GPS, IEEE 1394, Mobile DDR Controller, NFC, Optical/Telecom, Photonics, Receiver/Transmitter, RF Modules, Security Subsystems, UWB, W-CDMA
View Details

SiGe BiCMOS Technology for RF

This technology leverages the strengths of both Silicon-Germanium (SiGe) and BiCMOS processes to produce highly efficient RF solutions. SiGe BiCMOS technology is particularly advantageous for its performance in high-frequency applications, making it ideal for RF and wireless communication technologies. The integration of BiCMOS allows for the combination of bipolar and CMOS transistors on a single chip, enhancing the capacity for analog signal processing alongside digital logic. The SiGe component offers a significant advantage in terms of speed and frequency, ensuring high-performance operation suitable for cutting-edge communication standards. By merging these technologies, the process achieves low-noise amplification and superior linearity, which are crucial for advanced telecommunication systems and data transfer technologies. This makes it a go-to choice for various industries, including aerospace and defense, where precision signal processing is paramount. Additionally, the technology comes with a comprehensive suite of design kits that facilitate seamless integration with existing systems. These kits provide everything from standard libraries to bespoke IP configurations, helping customers tailor their solutions efficiently and effectively. The flexibility and performance it offers make this technology a standout in the realm of RF engineering, addressing the needs of high-speed communication infrastructure.

Tower Semiconductor Ltd.
Tower
65nm, 130nm, 180nm
A/D Converter, Amplifier, Analog Front Ends, CAN, Clock Synthesizer, Photonics, PLL, RF Modules
View Details

Complete RF Transceiver 433, 868 & 915 MHz

This RF transceiver is a versatile solution designed for effective communication in the Sub-GHz frequency bands, specifically 433, 868, and 915 MHz. Ideal for global applications, it adheres to the IEEE 802.15.4-2015 standard, ensuring compatibility with many existing wireless systems. With a data rate capability ranging from 128 kbps for both Rx and Tx to over 3+ Mbps for transmission, it supports robust connectivity in various environments. The transceiver stands out with its high integration, featuring an on-chip RF subsystem that eliminates the need for external radio chips, simplifying system architecture. Its built-in voltage regulators and bandgap reference enhance ease of integration into system designs. Notably, this transceiver supports modulation schemes such as GFSK, BPSK, and O-QPSK, offering flexibility for custom protocol development. Designed to operate efficiently across process nodes, the transceiver supports a wide range of foundries, making it a versatile option for diverse applications. With a transmit power range from -20 to +8 dBm and sensitivity levels reaching down to -106 dBm, it is engineered to assure reliable long-range communication without relying on complex mesh network setups. This simplifies the deployment in scenarios like smart metering where indoor and outdoor connectivity is critical.

ShortLink AB
All Foundries, TSMC
All Process Nodes, 40nm
3GPP-5G, CAN, Ethernet, JESD 204A / JESD 204B, Other, RF Modules, W-CDMA
View Details

hellaPHY Positioning Solution

hellaPHY Positioning Solution is an advanced edge-based software that significantly enhances cellular positioning capabilities by leveraging 5G and existing LTE networks. This revolutionary solution provides accurate indoor and outdoor location services with remarkable efficiency, outperforming GNSS in scenarios such as indoor environments or dense urban areas. By using the sparsest PRS standards from 3GPP, it achieves high precision while maintaining extremely low power and data utilization, making it ideal for massive IoT deployments. The hellaPHY technology allows devices to calculate their location autonomously without relying on external servers, which safeguards the privacy of the users. The software's lightweight design ensures it can be integrated into the baseband MCU or application processors, offering seamless compatibility with existing hardware ecosystems. It supports rapid deployment through an API that facilitates easy integration, as well as Over-The-Air updates, which enable continuous performance improvements. With its capability to operate efficiently on the cutting edge of cellular standards, hellaPHY provides a compelling cost-effective alternative to traditional GPS and similar technologies. Additionally, its design ensures high spectral efficiency, reducing strain on network resources by utilizing minimal data transmission, thus supporting a wide range of emerging applications from industrial to consumer IoT solutions.

PHY Wireless Inc.
TSMC
28nm
3GPP-5G, 3GPP-LTE, AMBA AHB / APB/ AXI, CAN, Error Correction/Detection, GPS, PCI, PLL, USB, V-by-One, W-CDMA, Wireless Processor
View Details

CAN 2.0/CAN FD Controller

The CAN 2.0/CAN FD Controller offered by Synective Labs is a comprehensive CAN controller suitable for integration into both FPGAs and ASICs. This controller is fully compliant with the ISO 11898-1:2015 standard, supporting both traditional CAN and the more advanced CAN FD protocols. The CAN FD protocol enhances the original CAN capabilities by transmitting payloads at increased bitrates up to 10 Mbit/s and accommodating longer payloads of up to 64 bytes compared to the standard 8 bytes. This controller integrates seamlessly with a variety of FPGA devices from leading manufacturers such as Xilinx, Altera, Lattice, and Microsemi. It supports native bus interfaces including AXI, Avalon, and APB, making it versatile and highly compatible with various processing environments. For those deploying System on Chip (SOC) type FPGAs, the controller offers robust processor integration options, making it an ideal choice for complex applications. A standout feature of this IP is its focus on diagnostics and CAN bus debugging, which makes it particularly beneficial for applications like data loggers. These diagnostic features can be selectively disabled during the build process to reduce the controller's footprint for more traditional uses. With its low-latency DMA, interrupt rate adaptation, and configurable hardware buffer size, this CAN controller is engineered for high efficiency and flexibility across different applications.

Synective Labs AB
AMBA AHB / APB/ AXI, CAN, CAN-FD, Interlaken, Receiver/Transmitter
View Details

CANmodule-IIIx

CANmodule-IIIx represents a cutting-edge CAN controller featuring post-modern enhancements for high-performance communication. This advanced controller, while fully adhering to CAN 2.0B standards, boasts 32 receive and 32 transmit mailboxes. Tailored for streamlined integrations, it ensures flexibility and innovation be it an FPGA or an ASIC system. By preserving the core's fundamental function while allowing added wrapping features, the CANmodule-IIIx provides unmatched adaptability without compromising on performance. The module has demonstrated its efficiency in sectors like automotive and telecommunications, ensuring swift data transactions and system reliability across various operational environments.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

CANsec Controller Core

The CANsec Controller Core is engineered to provide enhanced security features for automotive CAN networks. Traditional CAN networks are not inherently secure, posing challenges in protecting against unauthorized access and data tampering. This controller core integrates security protocols directly into the CAN framework, offering an encryption-enabled solution tailored for modern automotive needs. This controller core implements standardized security measures, ensuring confidentiality, integrity, and authenticity of CAN messages. By incorporating advanced cryptographic algorithms, the CANsec Controller Core meets stringent security requirements without compromising the performance that automotive applications demand. Its design focuses on minimizing resource consumption while providing robust security enhancements. Ideal for vehicles requiring secure communication between various electronic control units (ECUs), the core upholds the automotive industry’s increasing emphasis on cybersecurity. The CANsec Controller Core is versatile in its implementation, suitable for both new vehicle architectures and as an upgrade to existing systems, making it a vital component of future-proof automotive design.

Fraunhofer Institute for Photonic Microsystems (IPMS)
CAN, CAN XL, CAN-FD, Cryptography Cores, Cryptography Software Library, Embedded Security Modules, Security Protocol Accelerators, Temperature Sensor
View Details

GDP-XL Design Management System

The GDP-XL Design Management System by IC Manage is a high-performance, global solution designed for seamless design and IP management. It excels in providing a robust framework for collaboration across single and multiple design sites, integrating teams in different locations securely and efficiently. This system is particularly valued for its ability to support rigorous control over databases, ensuring the accuracy and consistency required for critical RFIC design processes. With GDP-XL, companies can manage their design data more reliably, addressing challenges commonly faced in semiconductor design environments. It offers enhanced productivity through unrivaled scalability and flexibility, allowing organizations to adapt to ever-changing design requirements without compromise. The system's advanced capabilities are leveraged by top-tier semiconductor companies to maintain a competitive edge in a fast-paced industry. As the industry's leading design data and IP management system, GDP-XL also supports innovative collaboration patterns, enabling seamless sharing and revision control among global teams. Its robust architecture facilitates the integration of various methodologies, aiding companies in efficiently navigating complex designs and maintaining meticulous tracking of their IP assets.

IC Manage
CAN
View Details

PCE04I Inmarsat Turbo Encoder

The PCE04I Inmarsat Turbo Encoder is engineered to optimize data encoding standards within satellite communications. Leveraging advanced state management, it enhances data throughput by utilizing a 16-state encoding architecture. This sophisticated development enables efficient signal processing, pivotal for high-stakes communication workflows. Furthermore, the PCE04I is adaptable across multiple frameworks, catering to diverse industry requirements. Innovation is at the forefront with the option of integrating additional state Viterbi decoders, tailoring performance to specific needs and bolstering reliability in communications.

Small World Communications
CAN, Digital Video Broadcast, Error Correction/Detection, Ethernet, W-CDMA
View Details

ARDSoC Embedded DPDK

ARDSoC is a pioneering embedded DPDK solution tailored for ARM-based SoCs, specifically engineered to enhance ARM processor performance by bypassing the traditional Linux network stack. This solution brings the efficiencies of DPDK, traditionally reserved for datacenter environments, into the embedded and MPSoC sphere, extending DPDK functionalities to a broader range of applications. The architecture of ARDSoC allows users to minimize power consumption, decrease latency, and reduce the total cost of ownership compared to conventional x86 solutions. This IP product facilitates packet processing applications and supports various technologies such as VPP, Docker, and Kubernetes, ensuring hardware-accelerated embedded network processing. Designed for integration across Xilinx Platforms, ARDSoC also offers high flexibility with the ability to run existing DPDK programs with minimal modification. It is optimized for performance on ARM A53 and A72 processors, ensuring that data structures are efficiently produced and consumed in hardware, thereby providing robust and reliable network data handling capabilities.

Atomic Rules LLC
14 Categories
View Details

PhantomBlu - Tactical Communications

PhantomBlu is a sophisticated mmWave communication solution specifically designed for the defense sector, empowering military operations with robust, high-performance connectivity. Leveraging advanced mmWave technology, it supports tactical connections between land, sea, and air platforms, enabling seamless IP networking over a secure, anti-jam resistant mesh network. PhantomBlu’s design is optimized for rapid deployment and versatile use across various challenging military and defense environments. The PhantomBlu system offers unprecedented connectivity and integration capabilities, supporting high-bandwidth, low-latency communications essential for defense operations. It features LPI (Low Probability of Interception) and LPD (Low Probability of Detection), ensuring stealth and operational security. Its adaptive networking solutions significantly enhance situational awareness and interoperability amongst varied defense assets, assuring seamless transfer of C4ISR data. Whether deployed across large terrains or in mobile units, PhantomBlu's resilience and scalability ensure that defense teams operate with confidence. Its advanced capabilities are critical in mitigating risks and enhancing strategic emission, making it an invaluable asset for modern military communications needs.

Blu Wireless Technology Ltd.
Intel Foundry, Samsung
28nm, 65nm
24 Categories
View Details

ZIA Stereo Vision

The ZIA Stereo Vision technology is crafted for applications that require depth perception and accurate distance measuring. Utilizing stereo vision algorithms, it excels in generating 3D data from dual-camera setups, which is crucial for robots, drones, and autonomous vehicles. By employing advanced disparity mapping techniques, this technology ensures high fidelity in spatial analysis, making it particularly effective in dynamic environments. Its integration optimizes tasks that need real-time 3D depth information, aiding navigation and object placement.

Digital Media Professionals Inc.
2D / 3D, AI Processor, Arbiter, Camera Interface, CAN, GPU, Graphics & Video Modules, Network on Chip, Photonics, Platform Security, Processor Core Independent, Vision Processor
View Details

Wireless Baseband IP

The Wireless Baseband IP from Low Power Futures is designed to optimize ultra-low-power consumption while minimizing footprint and code size. It includes a comprehensive configuration of baseband processor hardware IP, link layer, or medium access control layer firmware, built specifically for IoT applications including beacons, smart sensors, connected audio, and more. The IP offers easy integration into systems on a chip (SoC) and has been fully validated on an FPGA platform to ensure standards compliance and ease of use for developers. Built-in security features further enhance its suitability for secure IoT device deployments.

Low Power Futures
15 Categories
View Details

APIX3 Transmitter and Receiver Modules

The APIX3 Transmitter and Receiver Modules represent the pinnacle of automotive data communication, offering superior bandwidth and versatility for in-car network architectures. Capable of handling up to 12Gbps with quad twisted pair connections, APIX3 supports Ultra High Definition video resolutions across multiple channels concurrently. These modules also feature robust diagnostic and cable monitoring capabilities, ensuring uninterrupted operation and ease of maintenance in automotive environments.

INOVA Semiconductors GmbH
AMBA AHB / APB/ AXI, ATM / Utopia, CAN, D2D, Ethernet, Fibre Channel, Gen-Z, Graphics & Video Modules, HDMI, LIN, PowerPC, Receiver/Transmitter, Safe Ethernet, SAS, USB, V-by-One
View Details

INAP590T

The INAP590T is a transmitter module embedded within the APIX3 framework, delivering unparalleled data transfer capabilities for high-resolution automotive display systems. It supports HDMI 1.4a video interface and integrates seamlessly with existing in-car networks. This module offers advanced features such as scalable bandwidth, cable adaptability, and error correction, making it a reliable choice for next-generation infotainment architectures.

INOVA Semiconductors GmbH
Arbiter, ATM / Utopia, CAN, Ethernet, Fibre Channel, Gen-Z, Graphics & Video Modules, HDMI, LIN, PowerPC, Receiver/Transmitter, Safe Ethernet, USB, UWB, V-by-One
View Details

CANmodule-IIx

The CANmodule-IIx is a versatile FIFO-based CAN controller designed for robust communication solutions. This module guarantees full compliance with CAN 2.0B specifications, offering unmatched support for system-on-chip configurations. Ingeniously crafted for flexibility, this controller serves a wide array of applications like industrial automation and network communications. The FIFO-based architecture ensures efficient message handling, particularly in environments demanding high-speed data transactions. With successful deployments in multiple technology platforms, the CANmodule-IIx stands as an enduring solution for businesses striving to enhance bus-based communication efficiency.

Inicore Inc.
AMBA AHB / APB/ AXI, CAN, CAN-FD, PCI, UWB
View Details

CAN Controller

The CAN Controller is designed to manage Controller Area Networks in compliance with ISO 11898 Part 1 and CAN Specification Version 2.0. It provides a stable and efficient means of communication in automotive and industrial electronics, facilitating data exchange with high reliability. Its adherence to DO-254 standards underscores its suitability for safety-critical applications.

SafeCore Devices
CAN
View Details

CAN XL

DCAN XL redefines data communication by bridging the performance gap between CAN FD and 100Mbit Ethernet, setting a new benchmark in high-speed, flexible connectivity. With data rates up to 20 Mbit/s and payloads reaching 2048 bytes, it delivers unprecedented throughput—far beyond traditional CAN standards. Engineered for versatility, DCAN XL supports advanced protocol layering and Ethernet frame tunneling, making it an ideal choice for future-proof automotive, industrial, and IoT applications. It retains the robustness and reliability of the CAN protocol while offering full backward compatibility with Classical CAN, CAN FD, and CAN XL—ensuring effortless integration into existing systems. For physical layer connectivity, DCAN XL interfaces seamlessly with standard CAN transceivers (sub-10Mbps) and CAN SIC XL transceivers (above 10Mbps), providing flexibility without compromise. It’s not just evolution—it’s the next revolution in controller area networking.

Premium Vendor
DCD-SEMI
All Foundries
All Process Nodes
CAN, CAN XL, CAN-FD, Other, Safe Ethernet
View Details

Trimension SR250

Trimension SR250 is designed to optimize application performance in ultra-wideband (UWB) technology. This solution allows for precise location tracking across a range of scenarios, including automotive and industrial applications. Its robust architecture is tailored for seamless integration with existing systems, enhancing overall functionality and user experience. Trimension SR250's UWB capabilities make it a versatile choice for developers looking to implement real-time tracking and proximity-based solutions. The SR250 module stands out for its high accuracy and reliability, which are crucial for applications requiring consistent performance in dynamic environments. This technology supports various use cases, such as enhancing vehicular safety through reliable in-car communications and expanding the capabilities of smart infrastructure. With its cutting-edge design, the Trimension SR250 ensures minimal interference, thus guaranteeing stable operations even in densely populated wireless environments. Furthermore, Trimension SR250 is engineered for energy efficiency, aligning with the industry's move towards sustainable technology use. Its power optimization features make it suitable for battery-powered devices, extending operational time without frequent charging. This innovative UWB solution exemplifies NXP's dedication to providing cutting-edge technologies that meet modern demands for precision and efficiency.

NXP Semiconductors
3GPP-5G, CAN, GPS, JESD 204A / JESD 204B, Multiprocessor / DSP, NFC, OBSAI, Receiver/Transmitter, RF Modules, Switched Cap Filter, UWB, Wireless Processor
View Details

Trimension SR040

Trimension SR040 is engineered for ultra-precision tracking and communication in fast-evolving technological landscapes, particularly focusing on proximity-based applications. This module is crucial for systems where detailed spatial awareness and communication are required, like in industrial automation and automotive safety applications. It effectively bridges the gap between advanced technology and practical, everyday usage through its precise UWB capabilities. Among its innovative features, the SR040 supports seamless integration into broader systems, enhancing network capabilities and improving device-to-device communication. This is particularly beneficial in crowded signal environments where reliable communication is necessary. The SR040 allows for tight spatial resolutions and high accuracy, making it a trusted choice for developers who need consistent and reliable performance. NXP developers focused on energy optimization to ensure the SR040 meets the industry's call for environmentally friendly solutions. Its ability to operate efficiently on minimal power supports the longevity of battery-driven devices. As smart technology becomes more prevalent, the Trimension SR040 stands out by offering efficient, scalable, and sustainable solutions for future connectivity challenges.

NXP Semiconductors
3GPP-5G, CAN, GPS, JESD 204A / JESD 204B, Multiprocessor / DSP, NFC, OBSAI, Receiver/Transmitter, RF Modules, Switched Cap Filter, UWB, Wireless Processor
View Details

Trimension SR150

Designed for high-precision, short-range location services, the Trimension SR150 offers unrivaled performance in UWB technology for spatial awareness applications. This product serves industries such as automotive and industrial automation, where short-range communication and location tracking are critical. Fully compatible with modern technologies, the SR150 module enables seamless interactions within smart ecosystems. The versatility and adaptability of the Trimension SR150 make it perfect for various applications, including real-time asset tracking and enhanced vehicular communication systems. It significantly improves situational awareness, providing insights that are essential for safety and efficiency in automotive and industrial settings. The robust capabilities of the SR150 module ensure that it retains superior functioning amidst challenging environments. Combining state-of-the-art technology with energy-efficient design, the Trimension SR150 highlights NXP’s commitment to sustainability and innovation. Its low power consumption extends device lifespan, making it an ideal component for devices requiring long operation times. By focusing on providing stable and accurate UWB performance, this product supports the growing demand for precise and reliable location services.

NXP Semiconductors
3GPP-5G, CAN, GPS, JESD 204A / JESD 204B, Multiprocessor / DSP, NFC, OBSAI, Receiver/Transmitter, RF Modules, Switched Cap Filter, UWB, Wireless Processor
View Details
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt