All IPs > Automotive > Safe Ethernet
In the rapidly evolving automotive industry, the demand for reliable and secure communication systems is paramount. Safe Ethernet semiconductor IPs have become essential components in modern vehicles, facilitating high-speed and dependable data transfer within the complex network of automotive systems. These IPs are specifically designed to meet the rigorous safety standards and protocols required in the automotive sector, ensuring that all electronic control units (ECUs) communicate effectively and efficiently.
Safe Ethernet semiconductor IPs are integral to the operation of advanced driver-assistance systems (ADAS), infotainment systems, and vehicle-to-everything (V2X) communications. They provide a robust framework that supports secure data transmission while minimizing latency and maximizing data integrity. By enabling seamless connectivity across various in-vehicle networks, these semiconductor IPs enhance the overall driving experience and pave the way for autonomous vehicle technologies.
The products in this category are engineered to withstand the harsh conditions typical of automotive environments, including temperature extremes, electromagnetic interference, and vibrations. These semiconductor IPs adhere to the industry's stringent automotive Ethernet standards, such as IEEE 802.1AS and ISO 26262, ensuring that they provide safety-compliant solutions. As vehicles become more connected and automated, Safe Ethernet solutions play an increasingly critical role in maintaining the safety and reliability of these intricate systems.
Choosing the right Safe Ethernet semiconductor IP can significantly impact the performance and safety of your automotive systems. Our extensive selection offers customizable options that cater to various design requirements, making it easier for manufacturers to implement secure and efficient network solutions. Explore our comprehensive range to find the perfect match for your automotive networking needs, and stay ahead in the innovative world of vehicular technology.
TTTech's Time-Triggered Ethernet (TTEthernet) is a breakthrough communication technology that combines the reliability of traditional Ethernet with the precision of time-triggered protocols. Designed to meet stringent safety requirements, this IP is fundamental in environments where fail-safe operations are absolute, such as human spaceflight, nuclear facilities, and other high-risk settings. TTEthernet integrates seamlessly with existing Ethernet infrastructure while providing deterministic control over data transmission times, allowing for real-time application support. Its primary advantage lies in supporting triple-redundant networks, which ensures dual fault-tolerance, an essential feature exemplified in its use by NASA's Orion spacecraft. The integrity and precision offered by Time-Triggered Ethernet make it ideal for implementing ECSS Engineering standards in space applications. It not only permits robust redundancy and high bandwidth (exceeding 10 Gbps) but also supports interoperability with various commercial off-the-shelf components, making it a versatile solution for complex network architectures.
aiSim 5 is a state-of-the-art automotive simulation platform designed for ADAS and autonomous driving testing. Recognized as the world's first ISO26262 ASIL-D certified simulator, it offers unparalleled accuracy and determinism in simulating various driving scenarios and environmental conditions. The simulator integrates AI-based digital twin technology and an advanced rendering engine to create realistic traffic scenarios, helping engineers verify and validate driver assistance systems. Harnessing powerful physics-based simulation capabilities, aiSim 5 replicates real-world phenomena like weather effects and complex traffic dynamics with precision. By offering a comprehensive set of 3D assets and scenarios, it allows for the extensive testing of systems in both typical and edge conditions. With its flexible and open architecture, aiSim 5 can seamlessly integrate into existing testing toolchains, supporting significant variations in sensor configurations and driving algorithms. The platform encourages innovation in simulation methodologies by providing tools for scenario randomization and synthetic data generation, crucial for developing resilient ADAS applications. Additionally, its cloud-ready architecture makes it applicable across various hardware platforms, turning simulation into a versatile resource available on inexpensive or high-end computing configurations alike.
Bluespec's Portable RISC-V Cores are designed to bring flexibility and extended functionality to FPGA platforms such as Achronix, Xilinx, Lattice, and Microsemi. They offer support for operating systems like Linux and FreeRTOS, making them versatile for various applications. These cores are accompanied by standard open-source development tools, which facilitate seamless integration and development processes. By utilizing these tools, developers can modify and enhance the cores to suit their specific needs, ensuring a custom fit for their projects. The portable cores are an excellent choice for developers looking to deploy RISC-V architecture across different FPGA platforms without being tied down to proprietary solutions. With Bluespec's focus on open-source, users can experience freedom in innovation and development without sacrificing performance or compatibility.
The Time-Triggered Protocol (TTP) designed by TTTech is an advanced communication protocol meant to enhance the reliability of data transmission in critical systems. Developed in compliance with the SAE AS6003 standard, this protocol is ideally suited for environments requiring synchronized operations, such as aeronautics and high-stakes energy sectors. TTP allows for precise scheduling of communication tasks, creating a deterministic communication environment where the timing of data exchanges is predictable and stable. This predictability is crucial in eliminating delays and minimizing data loss in safety-critical applications. The protocol lays the groundwork for robust telecom infrastructures in airplanes and offers a high level of system redundancy and fault tolerance. TTTech’s TTP IP core is integral to their TTP-Controller ASICs and is designed to comply with stringent integrity and safety requirements, including those outlined in RTCA DO-254 / EUROCAE ED-80. The versatility of TTP allows it to be implemented across varying FPGA platforms, broadening its applicability to a wide range of safety-critical industrial systems.
The eSi-ADAS suite from EnSilica is a tailored collection of radar accelerator IPs designed to enhance automotive, drone, and UAV systems through advanced radar co-processing capabilities. This IP facilitates superior performance and enhanced situational awareness, crucial for applications requiring rapid and responsive decision-making. It merges cutting-edge radar technology with automotive standards, providing a robust platform for developing state-of-the-art driver assistance systems.\n\nThe suite’s radar co-processor engine is integral to improving radar system capabilities, ensuring that all signals are processed efficiently and accurately. This not only boosts the overall performance of radar systems but also aids in minimizing integration risks, streamlining the development process.\n\nFurthermore, eSi-ADAS supports various radar applications, enhancing safety and automation within the automotive sector. Its adaptability to UAV and drone designs also marks it as a versatile solution for unmanned systems, where responsiveness and precision are key.
The TSN Switch for Automotive Ethernet is designed to address the needs of modern automotive networks by offering time-sensitive networking capabilities. This switch is tailored to manage Ethernet-based communication in vehicles, ensuring low-latency and reliable data transmission. It supports complex automotive network architectures, making it ideal for real-time communication requirements in vehicles. With its robust time-sensitive networking features, this switch is capable of guaranteeing data delivery within tight time constraints, a critical requirement for advanced driver assistance systems (ADAS) and autonomous driving. It integrates seamlessly within the automotive Ethernet ecosystem, providing scalability and integration flexibility. The switch is engineered to support the industry's move towards centralized vehicle networking, improving data throughput and reducing cabling complexity. The switch’s architecture supports multiple ports, allowing for the connection of various vehicle subsystems within a unified network framework. Implementing this technology can drastically improve the efficiency and reliability of in-vehicle communication systems. The TSN capabilities optimize network traffic management, ensure the prioritization of time-critical messages, and enhance the overall stability and predictability of automotive data flows.
The Network Protocol Accelerator Platform (NPAP) is engineered to accelerate network protocol processing and offload tasks at speeds reaching up to 100 Gbps when implemented on FPGAs, and beyond in ASICs. This platform offers patented and patent-pending technologies that provide significant performance boosts, aiding in efficient network management. With its support for multiple protocols like TCP, UDP, and IP, it meets the demands of modern networking environments effectively, ensuring low latency and high throughput solutions for critical infrastructure. NPAP facilitates the construction of function accelerator cards (FACs) that support 10/25/50/100G speeds, effectively handling intense data workloads. The stunning capabilities of NPAP make it an indispensable tool for businesses needing to process vast amounts of data with precision and speed, thereby greatly enhancing network operations. Moreover, the NPAP emphasizes flexibility by allowing integration with a variety of network setups. Its capability to streamline data transfer with minimal delay supports modern computational demands, paving the way for optimized digital communication in diverse industries.
ISELED Technology is an innovative solution for automotive lighting, integrating smart RGB LED control and communication capabilities into compact, efficient modules. These modules support precise color calibration and temperature compensation, leveraging a digital communication protocol to ensure consistent lighting quality. The system is engineered to facilitate seamless integration into automotive lighting applications, enhancing aesthetic appeal and operational efficiency.
The TSP1 is an innovative neural network accelerator chip developed by ABR, designed to advance AI capabilities in battery-powered devices. It supports sophisticated applications such as natural voice interfaces and biosignal classification, demonstrating efficient data handling and low power consumption. This chip is engineered to process sensor signals robustly and independently, which enables highly efficient, state-space networks suitable for diverse applications. Benefiting from ABR's pioneering Legendre Memory Unit (LMU) state-space model, the TSP1 represents a new frontier in data processing efficiency, boasting remarkable power savings. This AI chip is tailored for edge computing contexts, proving itself ideal for applications like AR/VR, wearable technology, and smart home setups. With the TSP1, users can expect quick AI inference times, around 20 milliseconds, while maintaining secure on-chip storage and offering interfaces for multi-sensor inputs. The powerful combination of state-space networks and custom-tailored hardware optimization ensures the TSP1 leads in both scalability for large AI models and energy-aware performance for various sectors, including IoT and industrial applications.
The PCD03D Turbo Decoder is adept at handling multiple state decoding for standards such as DVB-RCS and IEEE 802.16 WiMAX. Its core design features an 8-state duobinary decoding structure, facilitating precise and quick signal deconstruction. Additionally, the optional inclusion of a 64-state Viterbi decoder enhances versatility and performance in various environments. This decoder is tailored for applications where agility and high data throughput are critical, making it an invaluable asset in wireless communication infrastructures. The decoder’s architecture supports expansive VHDL core integration, providing durable solutions across FPGA platforms.
Time-Sensitive Networking (TSN) from TTTech represents a significant advancement in industrial communication, offering precise timing and deterministic data delivery across network systems. This IP aids sectors ranging from aerospace to automotive by providing robust time-synchronization and schedule-aware communication networks. The core advantage of TSN lies in its detailed timing protocols, including time synchronization (IEEE 802.1AS), time-aware scheduling (IEEE 802.1Qbv), and frame replication (IEEE 802.1CB), ensuring that critical data packets are transmitted with high precision and reliability. These characteristics render TSN an essential component for applications requiring uninterrupted and synchronized data flows, especially in autonomous industrial automation and vehicular network systems. TTTech's TSN solutions extend across several domains; they are available for microcontrollers, SoCs, and network switches, offering flexible and scalable integration capabilities. The solution is reinforced by a comprehensive software stack and network scheduling tools, enhancing its applicability in designing next-generation connected systems.
Korusys' SMPTE 2059-2 Synchronization solution offers a comprehensive, high-accuracy hardware synchronization for video equipment leveraging IP networks. It generates precise timing signals crucial for both audio and video systems, ensuring seamless integration in professional environments. The solution is fully compliant with IEEE1588v2 standards, and supports both 2059-1 and 2059-2 frameworks, delivering a holistic timing solution through an integrated software and hardware approach.
PhantomBlu is a sophisticated mmWave communication solution specifically designed for the defense sector, empowering military operations with robust, high-performance connectivity. Leveraging advanced mmWave technology, it supports tactical connections between land, sea, and air platforms, enabling seamless IP networking over a secure, anti-jam resistant mesh network. PhantomBlu’s design is optimized for rapid deployment and versatile use across various challenging military and defense environments. The PhantomBlu system offers unprecedented connectivity and integration capabilities, supporting high-bandwidth, low-latency communications essential for defense operations. It features LPI (Low Probability of Interception) and LPD (Low Probability of Detection), ensuring stealth and operational security. Its adaptive networking solutions significantly enhance situational awareness and interoperability amongst varied defense assets, assuring seamless transfer of C4ISR data. Whether deployed across large terrains or in mobile units, PhantomBlu's resilience and scalability ensure that defense teams operate with confidence. Its advanced capabilities are critical in mitigating risks and enhancing strategic emission, making it an invaluable asset for modern military communications needs.
Deterministic Ethernet is a pivotal technology by TTTech for ensuring precise data communication in critical environments such as aerospace. Certified chip components for Ethernet networking enable the deployment of highly dependable connections, leveraging standards like ARINC 664 Part 7. Widely utilized in TTTech's integrated circuits, this technology facilitates time-triggered Ethernet (TTEthernet) or time-sensitive networking (TSN) connectivity, adding deterministic capabilities to standard Ethernet links. Thanks to its structured timing protocols, Deterministic Ethernet ensures that data packets are delivered with minimal delay variation, vital for applications where timing precision is essential. This predictable data flow enhances the reliability of network communications within avionics, providing the assurance required for safety-critical systems. The technology's implementation in FPGA solutions allows customers to tailor Ethernet integration to their specific system needs, further extending its application beyond the aviation industry to sectors like energy, where robust, high-performance data networks are indispensable.
The INAP375R Receiver is a component of the APIX2 technology suite, tailored to meet the stringent demands of automotive infotainment systems. It supports bi-directional, high-speed data transfer over a single twisted pair cable, up to distances of 12 meters, offering flexibility for complex vehicle architectures. The receiver integrates advanced error correction protocols and supports RGB and LVDS video interfaces, making it ideal for high-definition display applications in vehicles.
Our Embedded ReRAM technology empowers seamless integration into existing system-on-chip (SoC) designs, delivering a compact, efficient memory solution. Designed to cater to the needs of modern electronics, it provides significant advancements in speed and power efficiency over traditional non-volatile memory (NVM) options. With the ability to operate reliably under diverse environmental conditions, this embedded solution is ideal for a wide range of applications including IoT devices, automotive systems, and smarter consumer electronics. One of the standout features of Embedded ReRAM is its eco-friendliness and scalability. Despite being embedded, it ensures a minimal footprint while maintaining high performance, making it a favorable choice for future-proof designs. This technology is engineered to enhance data retention and withstand the rigors of extreme operational environments, reinforcing its suitability for automotive and aerospace applications. The innovation behind Embedded ReRAM focuses on delivering a combination of low-power operation and high-speed performance, overcoming the limitations associated with traditional flash memory. This makes it an exceptionally versatile component in designing edge computing solutions and energy-efficient AI hardware, driving forward the evolution of next-gen intelligent devices.
The V2X Router is engineered to facilitate communication between vehicles and surrounding infrastructure, promoting safer and smarter urban mobility. Its design allows for seamless integration into existing roadway systems to enable cars, traffic signals, and control centers to share data collectively, improving traffic management and reducing congestion. The router utilizes advanced communication protocols to ensure secure and rapid data exchange, thereby enhancing situational awareness and response times in dynamic urban settings. This is achieved through vehicle-to-everything (V2X) technology, which supports real-time communication between interconnected roadway components. Capable of operating reliably under various environmental conditions, the V2X Router is a pivotal component in modernizing urban transportation frameworks. Its implementation paves the way for more efficient traffic systems, reducing the likelihood of accidents and streamlining the flow of transport networks.
The IEEE1588 PTP solution by Korusys is an extensive network stack fully compliant with IEEE1588v2 standards, capable of handling sophisticated time synchronization tasks across networked systems. This solution supports a vast array of up to 4000 slave devices and includes network and simulation tools for enhanced customization and testing. Designed for scalability and reliability, it is adaptable to various operational requirements, providing robust synchronization for diverse applications.
The APIX3 Transmitter and Receiver Modules represent the pinnacle of automotive data communication, offering superior bandwidth and versatility for in-car network architectures. Capable of handling up to 12Gbps with quad twisted pair connections, APIX3 supports Ultra High Definition video resolutions across multiple channels concurrently. These modules also feature robust diagnostic and cable monitoring capabilities, ensuring uninterrupted operation and ease of maintenance in automotive environments.
The Korusync IEEE1588 PCIe Card is a specialized synchronization card compliant with PTPv2 protocols, designed for precise telecom and networking applications. Although it has reached end-of-life status for small quantities, it remains available for larger orders. Featuring an Ethernet port and SMA connectivity, this card generates a super-accurate software clock essential for maintaining synchronization across telecommunication networks. Its design targets high-precision network environments where accuracy is critical for operational success.
The INAP590T is a transmitter module embedded within the APIX3 framework, delivering unparalleled data transfer capabilities for high-resolution automotive display systems. It supports HDMI 1.4a video interface and integrates seamlessly with existing in-car networks. This module offers advanced features such as scalable bandwidth, cable adaptability, and error correction, making it a reliable choice for next-generation infotainment architectures.
The ULYSS MCU is a cutting-edge microcontroller crafted for advanced automotive applications, reflecting Cortus' commitment to innovation in the automotive technology space. With its foundation in RISC-V architecture, the ULYSS MCU offers a powerful range of features suitable for the rigorous demands of modern vehicles. This 32/64-bit MCU is engineered to operate at clock speeds ranging from 120MHz up to 2GHz, ensuring robust performance for automotive systems requiring highly responsive and reliable operation. The ULYSS MCU is adept at managing a variety of automotive functions, from basic operational controls to advanced driver-assistance systems (ADAS), positioning it as a future-ready solution for automotive technology evolution. Its capacity for real-time processing and data analysis is instrumental in achieving safety and efficiency enhancements in vehicle operations, enhancing the overall driving experience. In addition to its technical prowess, the ULYSS MCU is designed to accommodate cost-effectiveness alongside its performance benefits, making it an attractive option for automotive manufacturers seeking to integrate advanced technology without compromising on budget constraints. This harmonization of performance and affordability is key to its appeal across the automotive sector.
Discrete ReRAM chips developed by Weebit Nano provide a standalone memory solution that excels in environments requiring robust performance combined with low energy demand. This technology is engineered to reduce production costs while enhancing device efficiency, catering especially to industries where standalone memory solutions are pivotal. These chips boast impressive scalability, ensuring they remain relevant in a landscape where rapid technological advancements demand constant evolution of components. The simplicity and eco-friendly aspects of Discrete ReRAM chips make them a key asset in next-generation technology stacks aimed at driving down power consumption while retaining maximum processing efficiency. By leveraging its significant advantages such as high endurance and speed, Weebit's Discrete ReRAM offers a viable path towards achieving streamlined memory infrastructure within diverse sectors including edge computing, automotive, and industrial applications. This standalone approach allows greater freedom in design for tailored memory specifications without the constraints imposed by traditional non-volatile memories.
DCAN XL redefines data communication by bridging the performance gap between CAN FD and 100Mbit Ethernet, setting a new benchmark in high-speed, flexible connectivity. With data rates up to 20 Mbit/s and payloads reaching 2048 bytes, it delivers unprecedented throughput—far beyond traditional CAN standards. Engineered for versatility, DCAN XL supports advanced protocol layering and Ethernet frame tunneling, making it an ideal choice for future-proof automotive, industrial, and IoT applications. It retains the robustness and reliability of the CAN protocol while offering full backward compatibility with Classical CAN, CAN FD, and CAN XL—ensuring effortless integration into existing systems. For physical layer connectivity, DCAN XL interfaces seamlessly with standard CAN transceivers (sub-10Mbps) and CAN SIC XL transceivers (above 10Mbps), providing flexibility without compromise. It’s not just evolution—it’s the next revolution in controller area networking.
The INAP375T Transmitter is a high-speed data transmission solution specifically designed for the automotive industry. It employs the second generation APIX2 technology, which delivers high-speed differential data through a single twisted pair cable, supporting data rates up to 3Gbps. This transmitter can handle complex multimedia data like video and audio while maintaining robust error correction through the AShell protocol, ensuring reliable data communication within vehicles.
The AVB Milan IP is tailored for professional audio and video applications, adhering to the AVB standards for time-synchronized communication. It ensures deterministic data transfer, critical for audio networks and professional media systems. This IP guarantees low latency and precise timing, thus supporting complex audio and video systems' demands on synchronization and performance, differentiating it from conventional network protocols by offering real-time capabilities aligned with modern multimedia requirements.
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!