Log In

All IPs > Graphic & Peripheral

Graphic & Peripheral Semiconductor IP

Graphic & Peripheral Semiconductor IPs are critical components in the design and development of electronics that require efficient and robust control over multimedia and peripheral functions. This category of semiconductor IP encompasses a wide array of technologies used to manage and optimize graphics rendering, audio processing, data communication, and peripheral interfaces in electronic devices such as computers, smartphones, tablets, and other smart gadgets.

In this vivid category, you'll find a variety of subcategories tailored to specific functionalities. For instance, the Graphics Processing Unit (GPU) semiconductor IPs are pivotal for rendering images and video, essential in gaming, virtual reality, and professional content creation. Audio Controllers handle sound processing, ensuring crisp and seamless audio output, crucial for devices prioritizing high-quality sound delivery.

Other key components in the Graphic & Peripheral category include Peripheral Controllers, which facilitate the integration of various input/output devices, enhancing the device's interactivity and user experience. DMA Controllers are responsible for moving data efficiently between memory and peripherals, minimizing the CPU load. These IPs enhance overall system performance by ensuring that data flow is smooth and uninterrupted.

From Clock Generators that synchronize the entire system's operations to Interrupt Controllers managing priority tasks, each semiconductor IP in this category plays a unique role in ensuring that electronic devices operate at peak efficiency. By exploring these subcategories, companies and developers can find the precise semiconductors needed to support cutting-edge multimedia and peripheral technologies in their next product launch.

All semiconductor IP
Graphic & Peripheral
A/D Converter Amplifier Analog Comparator Analog Filter Analog Front Ends Analog Multiplexer Analog Subsystems Clock Synthesizer Coder/Decoder D/A Converter DC-DC Converter DLL Graphics & Video Modules Oscillator Oversampling Modulator Photonics PLL Power Management RF Modules Sensor Switched Cap Filter Temperature Sensor Voltage Regulator CAN CAN XL CAN-FD FlexRay LIN Other Safe Ethernet Arbiter Audio Controller Clock Generator CRT Controller Disk Controller DMA Controller GPU Input/Output Controller Interrupt Controller Keyboard Controller LCD Controller Other Peripheral Controller Receiver/Transmitter Timer/Watchdog VME Controller AMBA AHB / APB/ AXI CXL D2D Gen-Z HDMI I2C IEEE 1394 IEEE1588 Interlaken MIL-STD-1553 MIPI Multi-Protocol PHY Other PCI PCMCIA PowerPC RapidIO SAS SATA Smart Card USB V-by-One VESA Embedded Memories I/O Library Other Standard cell DDR Flash Controller HBM Mobile DDR Controller Mobile SDR Controller NAND Flash ONFI Controller Other RLDRAM Controller SD SDIO Controller SDRAM Controller SRAM Controller 2D / 3D ADPCM Audio Interfaces AV1 Camera Interface CSC DVB H.263 H.264 H.265 H.266 Image Conversion JPEG JPEG 2000 MHL MPEG / MPEG2 MPEG 4 MPEG 5 LCEVC NTSC/PAL/SECAM QOI TICO VC-2 HQ VGA WMA WMV Network on Chip Multiprocessor / DSP Processor Core Dependent Processor Core Independent AI Processor Audio Processor Building Blocks Coprocessor CPU DSP Core IoT Processor Microcontroller Other Processor Cores Vision Processor Wireless Processor Content Protection Software Cryptography Cores Cryptography Software Library Embedded Security Modules Other Platform Security Security Protocol Accelerators Security Subsystems 3GPP-5G 3GPP-LTE 802.11 802.16 / WiMAX Bluetooth CPRI Digital Video Broadcast GPS JESD 204A / JESD 204B NFC OBSAI Other UWB W-CDMA Wireless USB ATM / Utopia Cell / Packet Error Correction/Detection Ethernet Fibre Channel HDLC Interleaver/Deinterleaver Modulation/Demodulation Optical/Telecom Other
Vendor

KL730 AI SoC

The KL730 is a third-generation AI chip that integrates advanced reconfigurable NPU architecture, delivering up to 8 TOPS of computing power. This cutting-edge technology enhances computational efficiency across a range of applications, including CNN and transformer networks, while minimizing DDR bandwidth requirements. The KL730 also boasts enhanced video processing capabilities, supporting 4K 60FPS outputs. With expertise spanning over a decade in ISP technology, the KL730 stands out with its noise reduction, wide dynamic range, fisheye correction, and low-light imaging performance. It caters to markets like intelligent security, autonomous vehicles, video conferencing, and industrial camera systems, among others.

Kneron
TSMC
12nm
16 Categories
View Details

Akida 2nd Generation

The second-generation Akida platform builds upon the foundation of its predecessor with enhanced computational capabilities and increased flexibility for a broader range of AI and machine learning applications. This version supports 8-bit weights and activations in addition to the flexible 4- and 1-bit operations, making it a versatile solution for high-performance AI tasks. Akida 2 introduces support for programmable activation functions and skip connections, further enhancing the efficiency of neural network operations. These capabilities are particularly advantageous for implementing sophisticated machine learning models that require complex, interconnected processing layers. The platform also features support for Spatio-Temporal and Temporal Event-Based Neural Networks, advancing its application in real-time, on-device AI scenarios. Built as a silicon-proven, fully digital neuromorphic solution, Akida 2 is designed to integrate seamlessly with various microcontrollers and application processors. Its highly configurable architecture offers post-silicon flexibility, making it an ideal choice for developers looking to tailor AI processing to specific application needs. Whether for low-latency video processing, real-time sensor data analysis, or interactive voice recognition, Akida 2 provides a robust platform for next-generation AI developments.

BrainChip
11 Categories
View Details

UCIe-S 1.1/PCIe Gen6 Controller

Overview: The UCIe IP supports multiple protocols (CXL/PCIe/Streaming) to connect chiplets, reducing overall development cycles for IPs and SOCs. With flexible application and PHY interfaces, The UCIe IP is ideal for SOCs and chiplets. Key Features:  Supports UCIe 1.0 Specification  Supports CXL 2.0 and CXL 3.0 Specifications  Supports PCIe Gen6 Specification  Supports PCIe Gen5 and older versions of PCIe specifications  Supports single and two-stack modules  Supports CXL 2.0 68Byte flit mode with Fallback mode for PCIe non-flit mode transfers  Supports CXL 3.0 256Byte flit mode  Supports PCIe Gen6 flit mode  Configurable up to 64-lane configuration for Advanced UCIe modules and 16 lanes for Standard UCIe modules  Supports sideband and Mainband signals  Supports Lane repair handling  Data to clock point training and eye width sweep support from transmitter and receiver ends  UCIe controller can work as Downstream or Upstream  Main Band Lane reversal supported  Dynamic sense of normal and redundant clock and data lines activation  UCIe enumeration through DVSEC  Error logging and reporting supported  Error injection supported through Register programming  RDI/FDI PM entry, Exit, Abort flows supported  Dynamic clock gang at adapter supported Configurable Options:  Maximum link width (x1, x2, x4, x8, x16)  MPS (128B to 4KB)  MRRS (128B to 4KB)  Transmit retry/Receive buffer size  Number of Virtual Channels  L1 PM substate support  Optional Capability Features can be Configured  Number of PF/VFDMA configurable Options  AXI MAX payload size Variations  Multiple CPI Interfaces (Configurable)  Cache/memory configurable  Type 0/1/2 device configurable

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

Akida IP

The Akida IP is a groundbreaking neural processor designed to emulate the cognitive functions of the human brain within a compact and energy-efficient architecture. This processor is specifically built for edge computing applications, providing real-time AI processing for vision, audio, and sensor fusion tasks. The scalable neural fabric, ranging from 1 to 128 nodes, features on-chip learning capabilities, allowing devices to adapt and learn from new data with minimal external inputs, enhancing privacy and security by keeping data processing localized. Akida's unique design supports 4-, 2-, and 1-bit weight and activation operations, maximizing computational efficiency while minimizing power consumption. This flexibility in configuration, combined with a fully digital neuromorphic implementation, ensures a cost-effective and predictable design process. Akida is also equipped with event-based acceleration, drastically reducing the demands on the host CPU by facilitating efficient data handling and processing directly within the sensor network. Additionally, Akida's on-chip learning supports incremental learning techniques like one-shot and few-shot learning, making it ideal for applications that require quick adaptation to new data. These features collectively support a broad spectrum of intelligent computing tasks, including object detection and signal processing, all performed at the edge, thus eliminating the need for constant cloud connectivity.

BrainChip
AI Processor, Audio Processor, Coprocessor, CPU, Cryptography Cores, GPU, Input/Output Controller, IoT Processor, Platform Security, Processor Core Independent, Vision Processor
View Details

AI Camera Module

The AI Camera Module from Altek is a versatile, high-performance component designed to meet the increasing demand for smart vision solutions. This module features a rich integration of imaging lens design and combines both hardware and software capacities to create a seamless operational experience. Its design is reinforced by Altek's deep collaboration with leading global brands, ensuring a top-tier product capable of handling diverse market requirements. Equipped to cater to AI and IoT interplays, the module delivers outstanding capabilities that align with the expectations for high-resolution imaging, making it suitable for edge computing applications. The AI Camera Module ensures that end-user diversity is meaningfully addressed, offering customization in device functionality which supports advanced processing requirements such as 2K and 4K video quality. This module showcases Altek's prowess in providing comprehensive, all-in-one camera solutions which leverage sophisticated imaging and rapid processing to handle challenging conditions and demands. The AI Camera's technical blueprint supports complex AI algorithms, enhancing not just image quality but also the device's interactive capacity through facial recognition and image tracking technology.

Altek Corporation
Samsung
22nm
2D / 3D, AI Processor, AMBA AHB / APB/ AXI, Audio Interfaces, GPU, Image Conversion, IoT Processor, JPEG, Receiver/Transmitter, SATA, Vision Processor
View Details

Aries fgOTN Processors

The Aries fgOTN processor family is engineered according to the ITU-T G.709.20 fgOTN standard. This line of processors handles a variety of signals, including E1/T1, FE/GE, and STM1/STM4, effectively monitoring and managing alarms and performance metrics. Aries processors excel at fine-grain traffic aggregation, efficiently channeling fgODUflex traffic across OTN lines to support Ethernet, SDH, PDH client services. Their capacity to map signals to fgODUflex containers, which are then multiplexed into higher order OTN signals, demonstrates their versatility and efficiency. By allowing cascaded configurations with other Aries devices or Apodis processors, Aries products optimize traffic routes through OTN infrastructures, positioning them as essential components in optical networking and next-generation access scenarios.

Tera-Pass
AMBA AHB / APB/ AXI, HBM, NAND Flash, PCMCIA, Receiver/Transmitter, SAS
View Details

ARINC 818 Switch IP Core

iWave Global introduces the ARINC 818 Switch, a pivotal component in the management and routing of video data within avionics systems. Designed for applications that require efficient video data distribution and management, the switch is optimized for performance in environments with stringent data handling requirements. The switch's architecture supports a high level of bandwidth, allowing for the smooth routing of multiple video streams in real-time. Its design includes advanced features that ensure low-latency, error-free data transfer, integral to maintaining the integrity and reliability of video data in critical applications. Featuring robust interoperability characteristics, the ARINC 818 Switch easily integrates into existing systems, facilitating modular expansion and adaptability to new technological standards. It is indispensable for any aerospace project that involves complex video data management, providing a stable platform for video data routing and switching.

iWave Global
AMBA AHB / APB/ AXI, Coder/Decoder, Peripheral Controller
View Details

LC-PLLs

Silicon Creations delivers precision LC-PLLs designed for ultra-low jitter applications requiring high-end performance. These LC-tank PLLs are equipped with advanced digital architectures supporting wide frequency tuning capabilities, primarily suited for converter and PHY applications. They ensure exceptional jitter performance, maintaining values well below 300fs RMS. The LC-PLLs from Silicon Creations are characterized by their capacity to handle fractional-N operations, with active noise cancellation features allowing for clean signal synthesis free of unwanted spurs. This architecture leads to significant power efficiencies, with some IPs consuming less than 10mW. Their low footprint and high frequency integrative capabilities enable seamless deployments across various chip designs, creating a perfect balance between performance and size. Particular strength lies in these PLLs' ability to meet stringent PCIe6 reference clocking requirements. With programmable loop bandwidth and an impressive tuning range, they offer designers a powerful toolset for achieving precise signal control within cramped system on chip environments. These products highlight Silicon Creations’ commitment to providing industry-leading performance and reliability in semiconductor design.

Premium Vendor
Silicon Creations
GLOBALFOUNDRIES, TSMC, UMC
10nm, 28nm
Amplifier, Clock Generator, Photonics, PLL
View Details

Chimera GPNPU

The Quadric Chimera General Purpose Neural Processing Unit (GPNPU) delivers unparalleled performance for AI workloads, characterized by its ability to handle diverse and complex tasks without requiring separate processors for different operations. Designed to unify AI inference and traditional computing processes, the GPNPU supports matrix, vector, and scalar tasks within a single, cohesive execution pipeline. This design not only simplifies the integration of AI capabilities into system-on-chip (SoC) architectures but also significantly boosts developer productivity by allowing them to focus on optimizing rather than partitioning code. The Chimera GPNPU is highly scalable, supporting a wide range of operations across all market segments, including automotive applications with its ASIL-ready versions. With a performance range from 1 to 864 TOPS, it excels in running the latest AI models, such as vision transformers and large language models, alongside classic network backbones. This flexibility ensures that devices powered by Chimera GPNPU can adapt to advancing AI trends, making them suitable for applications that require both immediate performance and long-term capability. A key feature of the Chimera GPNPU is its fully programmable nature, making it a future-proof solution for deploying cutting-edge AI models. Unlike traditional NPUs that rely on hardwired operations, the Chimera GPNPU uses a software-driven approach with its source RTL form, making it a versatile option for inference in mobile, automotive, and edge computing applications. This programmability allows for easy updating and adaptation to new AI model operators, maximizing the lifespan and relevance of chips that utilize this technology.

Quadric
15 Categories
View Details

xcore.ai

The xcore.ai platform by XMOS is a versatile, high-performance microcontroller designed for the integration of AI, DSP, and real-time I/O processing. Focusing on bringing intelligence to the edge, this platform facilitates the construction of entire DSP systems using software without the need for multiple discrete chips. Its architecture is optimized for low-latency operation, making it suitable for diverse applications from consumer electronics to industrial automation. This platform offers a robust set of features conducive to sophisticated computational tasks, including support for AI workloads and enhanced control logic. The xcore.ai platform streamlines development processes by providing a cohesive environment that blends DSP capabilities with AI processing, enabling developers to realize complex applications with greater efficiency. By doing so, it reduces the complexity typically associated with chip integration in advanced systems. Designed for flexibility, xcore.ai supports a wide array of applications across various markets. Its ability to handle audio, voice, and general-purpose processing makes it an essential building block for smart consumer devices, industrial control systems, and AI-powered solutions. Coupled with comprehensive software support and development tools, the xcore.ai ensures a seamless integration path for developers aiming to push the boundaries of AI-enabled technologies.

XMOS Semiconductor
21 Categories
View Details

Expanded Serial Peripheral Interface (xSPI) Master Controller

Our Expanded Serial Peripheral Interface (JESD251) Master controller features a low signal count and high data bandwidth, making it ideal for use in computing, automotive, Internet of Things, embedded systems, and mobile system processors. It connects multiple sources of Serial Peripheral Interface (xSPI) slave devices, including nonvolatile memories, graphics peripherals, networking peripherals, FPGAs, and sensor devices. Features • Compliant with JEDEC standard JESD251 expanded Serial Peripheral Interface (xSPI) for Non-Volatile Memory Devices, Version 1.0. • Supports a single master and multiple slaves per interface port. • Supports Single Data Rate and Double Data Rate. • Supports source synchronous clocking. • Supports data transfer rates up to: o 400MT/s (200MHz Clock) o 333MT/s (167MHz Clock) o 266MT/s (133MHz Clock) o 200MT/s (100MHz Clock) • Supports Deep Power Down (DPD) enter and exit commands. • Standard support for eight IO ports, with the possibility to increase IO ports based on system performance requirements. • Optional support for Data Strobe (DS) for writemasking. • Supports 1-bit wide SDR transfer. • Supports Profile 1.0 commands to manage nonvolatile memory devices. • Supports Profile 2.0 commands to read or writedata for any type of slave device. • Compatible with non-volatile memory arrays such as NOR Flash, NAND Flash, FRAM, and nvSRAM. • Compatible with volatile memory arrays such as SRAM, PSRAM, and DRAM. • Supports register-mapped input/output functions. • Supports programmable function devices such as FPGAs. Application • Consumer Electronics. • Defence & Aerospace. • Virtual Reality. • Augmented Reality. • Medical. • Biometrics (Fingerprints, etc). • Automotive Devices. • Sensor Devices. Deliverables • Verilog Source code. • User Guide. • IP Integration Guide. • Run and Synthesis script. • Encrypted Verification Testbench Environment. • Basic Test-suite.

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

JESD251 xSPI Host/Device Controller

Overview: The Expanded Serial Peripheral Interface (xSPI) Master/Slave controller offers high data throughput, low signal count, and limited backward compatibility with legacy SPI devices. It is designed to connect xSPI Master/Slave devices in computing, automotive, Internet of Things, embedded systems, and mobile processors to various peripherals such as non-volatile memories, graphics peripherals, networking devices, FPGAs, and sensor devices. Key Features:  Compliance with JEDEC standard JESD251 eXpanded SPI for Non-Volatile Memory Devices, Version 1.0  Support for Single master and multiple slaves per interface port  Single Data Rate (SDR) and Double Data Rate (DDR) support  Source synchronous clocking  Deep Power Down (DPD) enter and exit commands  Eight IO ports in standard, expandable based on system requirements  Optional Data Strobe (DS) for write masking  bit wide SDR transfer support  Profile 1.0 Commands for non-volatile memory device management  Profile 2.0 Commands for read or write data for various slave devices Applications:  Consumer Electronics  Defense & Aerospace  Virtual Reality  Augmented Reality  Medical  Biometrics  Automotive Devices  Sensor Devices

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

AHB-Lite APB4 Bridge

The AHB-Lite APB4 Bridge serves as a crucial interconnect that facilitates communication between the AMBA 3 AHB-Lite and AMBA APB bus protocols. As a parameterized soft IP, it offers flexibility and adaptability in managing system interconnections, bridging the gap between high-speed and low-speed peripherals with efficiency. The bridge's architecture is designed to maintain data integrity while transferring information across different protocol tiers. This bridge supports the implementation of a seamless transition for data exchanges, ensuring data packets are transmitted with minimal latency. It is ideal for systems that require stable connectivity across multiple peripheral interfaces, delivering a cohesive platform for system designers to enhance operational uniformity. By enabling efficient bus conversion, it supports broader system architectures, contributing to the overall efficiency of embedded designs. With its open-architecture design, the AHB-Lite APB4 Bridge caters to a wide range of applications, providing necessary adaptability to meet the unique demands of each project. Its robust design ensures that it can accommodate the complex architectures of modern embedded systems, enhancing both performance and reliability.

Roa Logic BV
AMBA AHB / APB/ AXI, Embedded Security Modules, I2C, Input/Output Controller, Interlaken, Smart Card
View Details

KL630 AI SoC

The KL630 is a pioneering AI chipset featuring Kneron's latest NPU architecture, which is the first to support Int4 precision and transformer networks. This cutting-edge design ensures exceptional compute efficiency with minimal energy consumption, making it ideal for a wide array of applications. With an ARM Cortex A5 CPU at its core, the KL630 excels in computation while maintaining low energy expenditure. This SOC is designed to handle both high and low light conditions optimally and is perfectly suited for use in diverse edge AI devices, from security systems to expansive city and automotive networks.

Kneron
TSMC
12nm LP/LP+
ADPCM, AI Processor, Camera Interface, CPU, GPU, Input/Output Controller, Processor Core Independent, USB, VGA, Vision Processor
View Details

GenAI v1

RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.

RaiderChip
GLOBALFOUNDRIES, TSMC
28nm, 65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

Ring PLLs

The Ring PLLs offered by Silicon Creations illustrate a versatile clocking solution, well-suited for numerous frequency generation tasks within integrated circuit designs. Known for their general-purpose and specialized applications, these PLLs are crafted to serve a massive array of industries. Their high configurability makes them applicable for diverse synthesis needs, acting as the backbone for multiple clocking strategies across different environments. Silicon Creations' Ring PLLs epitomize high integration with functions tailored for low jitter and precision clock generation, suitable for battery-operated devices and systems demanding high accuracy. Applications span from general clocking to precise Audio Codecs and SerDes configurations requiring dedicated performance metrics. The Ring PLL architecture achieves best-in-class long-term and period jitter performance with both integer and fractional modes available. Designed to support high volumes of frequencies with minimal footprint, these PLLs aid in efficient space allocation within system designs. Their use of silicon-proven architectures and modern validation methodologies assure customers of high reliability and quick integration into existing SoC designs, emphasizing low risk and high reward configurations.

Premium Vendor
Silicon Creations
TSMC
16nm
Clock Generator, Clock Synthesizer, Photonics, PLL
View Details

PCIe Gen6 DM/RC/EP Controller

Overview: PCIe Gen6 is a high-speed, layered protocol interconnect interface supporting speeds up to 64GT/s, featuring multi-lanes and links. The Transport, Data Link, and Physical layers specified in the PCIe specification are implemented, along with PIPE interface logic connecting to PHY and AXI Bridging logic for application connectivity. Specifications:  Supports PCIe Gen 6 and Pipe 5.X Specifications  Core supports Flit and non-Flit Mode  Lane Configurations: X16, X8, X4, X2, X1  AXI MM and Streaming supported  Supports Gen1 to Gen6 modes  Data rate support of 2.5 GT/s, 5 GT/s, 8 GT/s, 16 GT/s, 32 GT/s, 64 GT/s  PAM support when operating at 64GT/s  Encoding/Decoding Support: 8b/10b, 128b/130b, 1b/1b  Supports SerDes and non-SerDes architecture  Optional DMA support as plugin module  Support for alternate negotiation protocol  Can operate as an endpoint or root complex  Lane polarity control through register  Lane de-skew supported  Support for L1 states and L0P  Support for SKP OS add/removal and SRIS mode  No equalization support through configuration  Deemphasis negotiation support at 5GT/s  Supports EI inferences in all modes  Supports PTM, OBFF, MSI, MSIX, Power management, and all message formats

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

ARINC 818 Product Suite

The ARINC 818 Product Suite by Great River Technology provides a comprehensive solution for high-performance digital video transmission in avionics applications. It supports the implementation, qualification, testing, and simulation of ARINC 818 products. This suite allows developers to access essential ARINC 818 tools and resources. It ensures optimal performance and reliability in mission-critical equipment by offering both hardware and software components tailored for the ARINC 818 standard. With its focus on high-speed data transfer and signal integrity, the ARINC 818 Product Suite is ideal for applications requiring lossless video transmission and real-time data handling in challenging conditions.

Great River Technology, Inc.
802.11, AMBA AHB / APB/ AXI, Analog Front Ends, Audio Interfaces, Ethernet, Graphics & Video Modules, I2C, MIPI, MPEG 5 LCEVC, Peripheral Controller, V-by-One, VC-2 HQ
View Details

GenAI v1-Q

The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.

RaiderChip
TSMC
65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

Stereax

Stereax is Ilika's micro-scale solid state battery innovation, designed primarily for use in miniature and implantable medical devices as well as industrial IoT sensors. Known for their ultra-thin and mm-scale form factor, Stereax batteries eliminate the presence of liquid or polymer components, which significantly enhances their safety profile. They are engineered to deliver long-lasting power, with a capability to undergo thousands of charge cycles, making them particularly suitable for critical applications requiring reliability and minimal maintenance. These batteries are compact yet powerful, adopting a rectangular IC-like form factor suitable for disruptive device designs. Stereax batteries maintain high capacity despite their small size, offering significant pulse power and low leakage, ideal for devices where space and performance are at a premium. This makes Stereax an attractive choice for innovations in medical technology, enabling new possibilities in areas such as neurostimulation, cardiac sensing, and smart orthopaedics. The collaboration with Cirtec Medical stands out in the commercialization path of Stereax, where Cirtec handles manufacturing and distribution under a licensing agreement with Ilika. This partnership exemplifies Ilika's approach to integrating cutting-edge technology with effective commercial strategies, ensuring that Stereax batteries become an industry-standard in their fields of application.

Ilika Plc
Peripheral Controller, Receiver/Transmitter
View Details

Serial FPDP (sFPDP) IP Core

iWave Global delivers the Serial FPDP (sFPDP) solution, a high-bandwidth, low-latency serial communication protocol widely deployed in high-performance computing systems. This technology is optimized for applications that require rapid data transport, such as radar and high-definition video processing, making it a vital tool in industrial and defense sectors. By supporting high throughput rates, the Serial FPDP ensures timely and reliable data transmission, crucial for systems where time sensitivity and data integrity are paramount. The solution is particularly designed to address real-time data operations, ensuring that data handling meets rigorous industry standards. With its robust design, the Serial FPDP accommodates various network topologies, allowing for the flexible deployment of communication systems. This flexibility and performance make it highly applicable in environments where system designers demand unobstructed high-speed data transfer capabilities.

iWave Global
Peripheral Controller
View Details

KL520 AI SoC

The KL520 marks Kneron's foray into the edge AI landscape, offering an impressive combination of size, power efficiency, and performance. Armed with dual ARM Cortex M4 processors, this chip can operate independently or as a co-processor to enable AI functionalities such as smart locks and security monitoring. The KL520 is adept at 3D sensor integration, making it an excellent choice for applications in smart home ecosystems. Its compact design allows devices powered by it to operate on minimal power, such as running on AA batteries for extended periods, showcasing its exceptional power management capabilities.

Kneron
TSMC
65nm
AI Processor, Camera Interface, Clock Generator, CPU, GPU, IoT Processor, MPEG 4, Processor Core Independent, Receiver/Transmitter, Vision Processor
View Details

KL530 AI SoC

The KL530 represents a significant advancement in AI chip technology with a new NPU architecture optimized for both INT4 precision and transformer networks. This SOC is engineered to provide high processing efficiency and low power consumption, making it suitable for AIoT applications and other innovative scenarios. It features an ARM Cortex M4 CPU designed for low-power operation and offers a robust computational power of up to 1 TOPS. The chip's ISP enhances image quality, while its codec ensures efficient multimedia compression. Notably, the chip's cold start time is under 500 ms with an average power draw of less than 500 mW, establishing it as a leader in energy efficiency.

Kneron
TSMC
28nm SLP
AI Processor, Camera Interface, Clock Generator, CPU, CSC, GPU, IoT Processor, Peripheral Controller, Vision Processor
View Details

GH310

The GH310 offers high-performance 2D sprite graphics capabilities with an emphasis on pixel throughput and minimal gate count. This makes it an excellent choice for applications that require rapid sprite rendering and high pixel density, such as user interfaces and gaming devices. Its optimized architecture supports efficient sprite operations, making it a versatile choice for embedded systems.

TAKUMI Corporation
2D / 3D, GPU
View Details

PRBS Generator, Checker, and Error Counter

The PRBS Generator, Checker, and Error Counter is a comprehensive solution within Kamaten's IP portfolio, designed to efficiently monitor and analyze serial data streams. It features an all-in-one generator, a checker for error detection, and an error counter, supporting PRBS orders 7, 15, and 31. This IP is ideal for high-speed data applications, equipped with differential CMOS data and clock inputs and outputs, offering a compact and power-efficient design with a power down mode for energy savings. The PRBS Generator, Checker, and Error Counter is designed for robustness and reliability in various environments, operating effectively at a high data rate of up to 36 Gbps. It's built on the well-established TSMC 28HPC process node, ensuring compatibility with modern semiconductor processes. The design also incorporates a power management feature that consumes 80 mA at a 32 Gbps rate, which scales with different data rates. Given its scalability and compact form factor, the PRBS solution is well-suited for integration into larger systems requiring precise data stream monitoring and error checking. This makes it an attractive choice for engineers looking to implement reliable high-speed serial data analysis in their projects.

Kamaten Technology Incorporated
TSMC
28nm
Receiver/Transmitter
View Details

PDM-to-PCM Converter

The PDM-to-PCM Converter from Archband Labs leads in transforming pulse density modulation signals into pulse code modulation signals. This converter is essential in applications where high fidelity of audio signal processing is vital, including digital audio systems and communication devices. Archband’s solution ensures accurate conversion, preserving the integrity and clarity of the original audio. This converter is crafted to seamlessly integrate with a wide array of systems, offering flexibility and ease-of-use in various configurations. Its robust design supports a wide range of input frequencies, making it adaptable to different signal environments. The PDM-to-PCM Converter also excels in minimizing latency and reducing overhead processing times. It’s engineered for environments where precision and sound quality are paramount, ensuring that audio signals remain crisp and undistorted during conversion processes.

Archband Labs
AMBA AHB / APB/ AXI, Audio Interfaces, Coder/Decoder, CSC, GPU, Input/Output Controller, Receiver/Transmitter, VC-2 HQ
View Details

Free Running Oscillators

Silicon Creations' Free Running Oscillators provide dependable timing solutions for a range of applications such as watchdog timers and core clock generators in low-power systems. These oscillators, crafted with compactness and efficiency in mind, support a gamut of processes from 65nm to the latest 3nm technologies. These oscillators excel in low power consumption, often requiring less than 30µW during operation. Their robust design ensures they deliver high precision over a temperature range from -40°C to 125°C with supply voltage variabilities factored in. The simplicity in design negates the need for external components, promoting easier integration and reduced overall system complexity. Precise tuning capabilities allow for accuracy levels up to ±1.5% after process trimming, ensuring outstanding performance in volatile environmental conditions. This level of reliability makes them ideal for integration into various consumer electronics, automotive controls, and other precision-demanding applications where space and power constraints are critical.

Premium Vendor
Silicon Creations
TSMC
5nm, 65nm
Clock Generator, Clock Synthesizer, Oscillator
View Details

LVDS Interfaces

Silicon Creations crafts highly reliable LVDS interfaces designed to meet diverse application needs, going from bi-directional I/Os to specialized uni-directional configurations. Spanning process compatibilities from 90nm CMOS to advanced 7nm FinFET, these interfaces are a cornerstone for high-speed data communication systems, thriving particularly in video data transmission and chip-to-chip communications. Supporting robust data rates over multiple channels, the LVDS Interfaces guarantee flexible programmability and protocol compatibility with standards such as FPD-Link and Camera-Link. They capitalize on proven PLL and CDR architectures for superior signal integrity and error-free data transfers. Operating efficiently in various technology nodes, they remain highly effective across collaborative chipset environments. The interfaces are fortified with adaptable features like dynamic phase alignment to stabilize data sequences and on-die termination options for superior signal integrity. Their proven record places them as a critical enabler in applications where consistent high-speed data transfer is paramount, demonstrating Silicon Creations’ prowess in delivering industry-leading communication solutions.

Premium Vendor
Silicon Creations
TSMC
12nm, 40nm
Analog Multiplexer, Input/Output Controller, MIPI, Multi-Protocol PHY, Peripheral Controller, Receiver/Transmitter, USB, V-by-One
View Details

eSi-Connect

eSi-Connect offers an extensive suite of AMBA-compliant peripheral IPs designed to streamline SoC integration. This suite encompasses versatile memory controllers, standard off-chip interface support, and essential control functions. Its configurability and compatibility with low-level software drivers make it suitable for real-time deployment in complex system architectures, promoting reliable connectivity across various applications.

eSi-RISC
AMBA AHB / APB/ AXI, Gen-Z, I2C, Input/Output Controller, LCD Controller, PCI, Peripheral Controller, Receiver/Transmitter, SATA, Timer/Watchdog, USB
View Details

AHB-Lite Multilayer Switch

The AHB-Lite Multilayer Switch by Roa Logic is a sophisticated interconnect fabric that provides high performance with low latency capabilities. Designed for extensive connectivity, it supports an unlimited number of bus masters and slaves, making it ideal for large-scale system architectures. This switch ensures data is efficiently propagated through various paths, optimizing resource allocation and throughput in complex systems. With a focus on performance, the multilayer switch is crafted to manage data traffic within high-demand environments seamlessly. Its support for multiple layers allows it to efficiently handle concurrent data transactions, facilitating effective communication between different system components. The adaptive structure and controlled latency pathways enable it to fit a multitude of applications, including those requiring rapid data transfer and processing. The AHB-Lite Multilayer Switch is engineered to integrate seamlessly into modern system architectures, enhancing throughput without compromising on signal integrity. Its robust design and flexible configuration options make it indispensable within systems necessitating dynamic connectivity solutions.

Roa Logic BV
AMBA AHB / APB/ AXI, Embedded Security Modules, Input/Output Controller
View Details

AHB-Lite Timer

The AHB-Lite Timer module designed by Roa Logic is compliant with the RISC-V Privileged 1.9.1 specification, offering a versatile timing solution for embedded applications. As an integral peripheral, it provides precise timing functionalities, enabling applications to perform scheduled operations accurately. Its parameterized design allows developers to adjust the timer's features to match the needs of their system effectively. This timer module supports a broad scope of timing tasks, ranging from simple delay setups to complex timing sequences, making it ideal for various embedded system requirements. The flexibility in its design ensures straightforward implementation, reducing complexity and enhancing the overall performance of the target application. With RISC-V compliance at its core, the AHB-Lite Timer ensures synchronization and precision in signal delivery, crucial for systems tasked with critical timing operations. Its adaptable architecture and dependable functionality make it an exemplary choice for projects where timing accuracy is required.

Roa Logic BV
AMBA AHB / APB/ AXI, CPU, Cryptography Software Library, Input/Output Controller, Timer/Watchdog
View Details

Expanded Serial Peripheral Interface (xSPI) Slave Controller

Our Expanded Serial Peripheral Interface (JESD251) Slave controller offers high data throughput, low signal count, and limited backward compatibility with legacy Serial Peripheral Interface (SPI) devices. It is used to connect xSPI Master devices in computing, automotive, Internet of Things, embedded systems, and mobile system processors to non-volatile memories, graphics peripherals, networking peripherals, FPGAs, and sensor devices. Features • Compliant with JEDEC standard JESD251 expanded Serial Peripheral Interface (xSPI) for Non-Volatile Memory Devices, Version 1.0. • Supports Single Data Rate (SDR) and Double Data Rate (DDR). • Supports source synchronous clocking. • Supports data transfer rates up to: o 400MT/s (200MHz Clock) o 333MT/s (167MHz Clock) o 266MT/s (133MHz Clock) o 200MT/s (100MHz Clock) • Supports Deep Power Down (DPD) enter and exit commands. • Standard support for eight IO ports, with the possibility to increase IO ports based on system performance requirements. • Optional support for Data Strobe (DS) for timing reference. • Supports 1-bit wide SDR transfer. • Supports Profile 1.0 commands to manage nonvolatile memory devices. • Supports Profile 2.0 commands for reading or writing data for any type of slave device. • Compatible with non-volatile memory arrays such as NOR Flash, NAND Flash, FRAM, and nvSRAM. • Compatible with volatile memory arrays such as SRAM, PSRAM, and DRAM. • Supports register-mapped input/output functions. • Supports programmable function devices such as FPGAs. Application • Consumer Electronics. • Defence & Aerospace. • Virtual Reality. • Augmented Reality. • Medical. • Biometrics (Fingerprints, etc). • Automotive Devices. • Sensor Devices. Deliverables • Verilog Source code. • User Guide. • IP Integration Guide. • Run and Synthesis script. • Encrypted Verification Testbench Environment. • Basic Test-suite.

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

CXL V3.0/V2.0 DM/Host/Device Controller

Overview: The Multi-Protocol Accelerator IP is a versatile technology designed to support low latency and high bandwidth accelerators for efficient CPU-to-device and CPU-to-memory communication. It also enables switching for fan-out to connect more devices, memory pooling for increased memory utilization efficiency, and provides memory capacity with support for hot-plug, security enhancements, persistent memory support, and memory error reporting. Key Features:  CXL 3.0 Support: Compliant with CXL spec V3.X/V2.X  PCIe Compatibility: Supports PCIe spec 6.0/5.0  CPI Interface: Support for CPI Interface  AXI Interface: Configurable AXI master, AXI slave  Bus Support: PIPE/FLEX bus, Lane x1,x2,x4,x8,x16  Protocol Support: Gen3, Gen4, Gen5 & Gen6, Fallback Mode  Register Checks: Configuration and Memory Mapped registers  Dual Mode: Supports Dual Mode operation  Transfer Support: HBR/PBR & LOpt Transfers, Standard Cache and Mem Transfers  CXL Support: Can function as both CXL host and device  Data Transfer: Supports Standard IO, 68Byte Flit, and 256Byte Flit Transfers  FlexBus Features: FlexBus Link Features, ARB/MUX, ARB/MUX Bypass  Optimization: Latency Optimization, Credit Return Forcing, Empty Flits (Latency Optimized)  Power Management: Supports Power Management features  Enhancements: CXL IDE, RAS Features, Poison & Viral Handling, MLD/SLD  Testing: Compliance Testing and Error Scenarios support

Plurko Technologies
All Foundries
All Process Nodes
Peripheral Controller
View Details

Apodis OTN Processors

The Apodis family of Optical Transport Network processors adheres to ITU-T standards, offering a comprehensive suite for signal termination, processing, and multiplexing. Designed to handle both SONET/SDH and Ethernet client services, these processors map signals to Optical Transport Network (OTN), empowering versatile any-port, any-service configurations. Apodis processors are notable for their capacity to support up to 16 client ports and four 10G OTN line ports, delivering bandwidth scalability up to 40G, crucial for wireless backhaul and fronthaul deployments. With a robust, non-blocking OTN switching fabric, Apodis facilitates seamless client-to-line and line-to-line connections while optimally managing network bandwidth. This adaptability makes the Apodis processors an ideal choice for next-generation access networks and optical infrastructures.

Tera-Pass
AMBA AHB / APB/ AXI, HBM, NAND Flash, PCMCIA, Receiver/Transmitter, SAS
View Details

aLFA-C

aLFA-C is another notable product from Caeleste, intended for diverse applications requiring refined imaging capabilities. This sensor is exemplary in balancing speed and precision, catering to both scientific and industrial imaging requirements. Its design includes advanced features that ensure reliable image quality, even in suboptimal lighting conditions, making it a versatile tool for industries that demand rigorous accuracy.\n\nBuilt by leveraging Caeleste's extensive knowledge in CMOS image sensor technology, the aLFA-C provides users with flexibility in utilization across varying scenarios. From capturing high-speed industrial processes to detailed life sciences imaging, this sensor adapts to deliver optimal results. Its robustness and precision imaging are supported by sophisticated sensor architecture that minimizes noise while maintaining the integrity of the readout signal.\n\nCaeleste’s focus on offering customizable solutions is evident in the aLFA-C sensor's adaptability to different usage parameters, allowing users to achieve their specific imaging goals. The sensor represents a blend of performance and adaptability, ensuring that whatever the need, from industrial inspections to detailed scientific analysis, aLFA-C consistently delivers.

Caeleste
HHGrace, Renesas
55nm, 250nm
Analog Front Ends, Oversampling Modulator, Peripheral Controller, Sensor
View Details

RAIV General Purpose GPU

RAIV represents Siliconarts' General Purpose-GPU (GPGPU) offering, engineered to accelerate data processing across diverse industries. This versatile GPU IP is essential in sectors engaged in high-performance computing tasks, such as autonomous driving, IoT, and sophisticated data centers. With RAIV, Siliconarts taps into the potential of the fourth industrial revolution, enabling rapid computation and seamless data management. The RAIV architecture is poised to deliver unmatched efficiency in high-demand scenarios, supporting massive parallel processing and intricate calculations. It provides an adaptable framework that caters to the needs of modern computing, ensuring balanced workloads and optimized performance. Whether used for VR/AR applications or supporting the back-end infrastructure of data-intensive operations, RAIV is designed to meet and exceed industry expectations. RAIV’s flexible design can be tailored to enhance a broad spectrum of applications, promising accelerated innovation in sectors dependent on AI and machine learning. This GPGPU IP not only underscores Siliconarts' commitment to technological advancement but also highlights its capability to craft solutions that drive forward computational boundaries.

Siliconarts, Inc.
AI Processor, Building Blocks, CPU, GPU, Multiprocessor / DSP, Processor Core Dependent, Processor Core Independent, Processor Cores, Vision Processor, Wireless Processor
View Details

aiSim 5

aiSim 5 is a state-of-the-art automotive simulation platform designed for ADAS and autonomous driving testing. Recognized as the world's first ISO26262 ASIL-D certified simulator, it offers unparalleled accuracy and determinism in simulating various driving scenarios and environmental conditions. The simulator integrates AI-based digital twin technology and an advanced rendering engine to create realistic traffic scenarios, helping engineers verify and validate driver assistance systems. Harnessing powerful physics-based simulation capabilities, aiSim 5 replicates real-world phenomena like weather effects and complex traffic dynamics with precision. By offering a comprehensive set of 3D assets and scenarios, it allows for the extensive testing of systems in both typical and edge conditions. With its flexible and open architecture, aiSim 5 can seamlessly integrate into existing testing toolchains, supporting significant variations in sensor configurations and driving algorithms. The platform encourages innovation in simulation methodologies by providing tools for scenario randomization and synthetic data generation, crucial for developing resilient ADAS applications. Additionally, its cloud-ready architecture makes it applicable across various hardware platforms, turning simulation into a versatile resource available on inexpensive or high-end computing configurations alike.

aiMotive
24 Categories
View Details

KL720 AI SoC

The KL720 AI SoC is designed for optimal performance-to-power ratios, achieving 0.9 TOPS per watt. This makes it one of the most efficient chips available for edge AI applications. The SOC is crafted to meet high processing demands, suitable for high-end devices including smart TVs, AI glasses, and advanced cameras. With an ARM Cortex M4 CPU, it enables superior 4K imaging, full HD video processing, and advanced 3D sensing capabilities. The KL720 also supports natural language processing (NLP), making it ideal for emerging AI interfaces such as AI assistants and gaming gesture controls.

Kneron
TSMC
16nm FFC/FF+
2D / 3D, AI Processor, Audio Interfaces, AV1, Camera Interface, CPU, GPU, Image Conversion, TICO, Vision Processor
View Details

H.264 FPGA Encoder and CODEC Micro Footprint Cores

The H.264 FPGA Encoder and CODEC micro footprint cores are a compact and fast solution for video compression, specifically tailored for FPGAs. This licensable IP cores support 1080p60 H.264 Baseline encoding with a single core, offering various configurations such as an H.264 Encoder, CODEC, and I-Frame Only Encoder. These cores are renowned for their small size and rapid processing capabilities, designed to be ITAR compliant for secure applications. Developers can customize these cores to achieve desired pixel depths and resolutions, ensuring adaptability to diverse project needs. With an exceptionally low 1ms latency at 1080p30, these cores are acclaimed as industry-leading in terms of both size and performance. They enhance efficiency by providing fast video processing solutions without compromising quality. The cores are particularly useful in applications demanding high-speed and high-resolution video compression in FPGA implementations. These H.264 cores come with the option for a low-cost evaluation license, providing a seamless entry into advanced video processing tasks. With customizable features, they represent a versatile choice for engineers working on applications involving intensive video encoding and decoding needs.

A2e Technologies
AI Processor, AMBA AHB / APB/ AXI, Arbiter, Audio Controller, DVB, H.264, H.265, HDMI, Multiprocessor / DSP, Other, TICO, USB, Wireless Processor
View Details

ARINC 818-3 IP Core

The ARINC 818-3 IP Core from iWave Global represents an advancement in avionics video interface technology, designed for high-speed and high-fidelity video data transmission. This IP core addresses the needs of modern aerospace systems that require robust video communication links both for military and commercial use. It supports a wide array of enhancements over previous generations, including increased bandwidth and improved signal integrity. This ensures that the ARINC 818-3 IP Core can handle the demands of next-generation avionic systems seamlessly, supporting advanced video processing and display systems. The core's design prioritizes modularity and scalability, allowing for easy integration and expansion to meet evolving system requirements. It is positioned as an essential tool for aviation applications demanding high reliability and accuracy in video data handling and display solutions, making it indispensable for new and retrofitted aerospace projects.

iWave Global
AMBA AHB / APB/ AXI, Coder/Decoder, Peripheral Controller
View Details

AXI4 DMA Controller

The AXI4 DMA Controller is a highly versatile IP core that supports multi-channel data transfers, ranging from 1 to 16 channels, depending on system requirements. Optimized for high throughput, this controller excels in transferring both small and large data sets effectively. It features independent DMA Read and Write Controllers for enhanced data handling with options for FIFO transfers to a diverse array of memory and peripheral configurations. This IP core offers significant flexibility with its programmable burst sizes, supporting up to 256 beats and adhering to critical boundary crossings in the AXI specification.

Digital Blocks
AMBA AHB / APB/ AXI, DMA Controller, Ethernet, SD, SDRAM Controller, SRAM Controller, USB
View Details

Portable RISC-V Cores

Bluespec's Portable RISC-V Cores are designed to bring flexibility and extended functionality to FPGA platforms such as Achronix, Xilinx, Lattice, and Microsemi. They offer support for operating systems like Linux and FreeRTOS, making them versatile for various applications. These cores are accompanied by standard open-source development tools, which facilitate seamless integration and development processes. By utilizing these tools, developers can modify and enhance the cores to suit their specific needs, ensuring a custom fit for their projects. The portable cores are an excellent choice for developers looking to deploy RISC-V architecture across different FPGA platforms without being tied down to proprietary solutions. With Bluespec's focus on open-source, users can experience freedom in innovation and development without sacrificing performance or compatibility.

Bluespec
AMBA AHB / APB/ AXI, CPU, IoT Processor, Peripheral Controller, Processor Core Dependent, Safe Ethernet
View Details

Spiking Neural Processor T1 - Ultra-lowpower Microcontroller for Sensing

The Spiking Neural Processor T1 is designed as a highly efficient microcontroller that integrates neuromorphic intelligence closely with sensors. It employs a unique spiking neural network engine paired with a nimble RISC-V processor core, forming a cohesive unit for advanced data processing. With this setup, the T1 excels in delivering next-gen AI capabilities embedded directly at the sensor, operating within an exceptionally low power consumption range, ideal for battery-dependent and latency-sensitive applications. This processor marks a notable advancement in neuromorphic technology, allowing for real-time pattern recognition with minimal power draw. It supports various interfaces like QSPI, I2C, and UART, fitting into a compact 2.16mm x 3mm package, which facilitates easy integration into diverse electronic devices. Additionally, its architecture is designed to process different neural network models efficiently, from spiking to deep neural networks, providing versatility across applications. The T1 Evaluation Kit furthers this ease of adoption by enabling developers to use the Talamo SDK to create or deploy applications readily. It includes tools for performance profiling and supports numerous common sensors, making it a strong candidate for projects aiming to leverage low-power, intelligent processing capabilities. This innovative chip's ability to manage power efficiency with high-speed pattern processing makes it especially suitable for advanced sensing tasks found in wearables, smart home devices, and more.

Innatera Nanosystems
TSMC
22nm
AI Processor, Coprocessor, CPU, DSP Core, Input/Output Controller, IoT Processor, Microcontroller, Multiprocessor / DSP, Standard cell, Vision Processor, Wireless Processor
View Details

Ultra-Low Latency 10G Ethernet MAC

This IP core is engineered for applications where minimal latency is of paramount importance. The Ultra-Low Latency 10G Ethernet MAC features an optimized architecture to provide rapid data transmission and reception capabilities, ensuring that all processes occur smoothly and efficiently. It is tailored specifically for real-time operations where every millisecond counts, like high-frequency trading and real-time monitoring systems. By focusing on reducing latency, this Ethernet MAC core delivers exceptional performance, making it an excellent choice for demanding environments that cannot afford delayed communication. The core's architecture reduces overhead and maximizes throughput, leveraging Chevin Technology's advanced design expertise to minimize signal interference and processing delays. Its seamless integration with both AMD and Intel FPGA platforms makes it versatile for a variety of implementations across industry sectors. Moreover, it's designed to maintain optimal performance while managing high data loads, showcasing a consistent ability to handle extensive network traffic efficiently.

Chevin Technology
AMBA AHB / APB/ AXI, Ethernet, PLL, Receiver/Transmitter, SAS, SATA, SDRAM Controller
View Details

HOTLink II Product Suite

The HOTLink II Product Suite by Great River Technology is tailored for mission-critical avionics systems requiring robust data communication. It enables seamless data transfer and ensures consistent performance under high-stress operational environments. This suite incorporates advanced technologies to handle complex data streams effectively. It includes component options that enhance data throughput and communication efficiency, meeting stringent industry standards for avionics platforms. Designed with precision, the HOTLink II suite supports the integration and management of large datasets, ensuring that avionics systems can perform efficiently and reliably, crucial for modern aircraft and defense applications.

Great River Technology, Inc.
15 Categories
View Details

C100 IoT Control and Interconnection Chip

The Chipchain C100 is a pioneering solution in IoT applications, providing a highly integrated single-chip design that focuses on low power consumption without compromising performance. Its design incorporates a powerful 32-bit RISC-V CPU which can reach speeds up to 1.5GHz. This processing power ensures efficient and capable computing for diverse IoT applications. This chip stands out with its comprehensive integrated features including embedded RAM and ROM, making it efficient in both processing and computing tasks. Additionally, the C100 comes with integrated Wi-Fi and multiple interfaces for transmission, broadening its application potential significantly. Other notable features of the C100 include an ADC, LDO, and a temperature sensor, enabling it to handle a wide array of IoT tasks more seamlessly. With considerations for security and stability, the Chipchain C100 facilitates easier and faster development in IoT applications, proving itself as a versatile component in smart devices like security systems, home automation products, and wearable technology.

Shenzhen Chipchain Technologies Co., Ltd.
TSMC
7nm LPP, 16nm, 28nm
20 Categories
View Details

RayCore MC Ray Tracing GPU

The RayCore MC is a revolutionary real-time path and ray-tracing GPU designed to enhance rendering with minimal power consumption. This GPU IP is tailored for real-time applications, offering a rich graphical experience without compromising on speed or efficiency. By utilizing advanced ray-tracing capabilities, RayCore MC provides stunning visual effects and lifelike animations, setting a high standard for quality in digital graphics. Engineered for scalability and performance, RayCore MC stands out in the crowded field of GPU technologies by delivering seamless, low-latency graphics. It is particularly suited for applications in gaming, virtual reality, and the burgeoning metaverse, where realistic rendering is paramount. The architecture supports efficient data management, ensuring that even the most complex visual tasks are handled with ease. RayCore MC's architecture supports a wide array of applications beyond entertainment, making it a vital tool in areas such as autonomous vehicles and data-driven industries. Its blend of power efficiency and graphical prowess ensures that developers can rely on RayCore MC for cutting-edge, resource-light graphic solutions.

Siliconarts, Inc.
2D / 3D, Audio Processor, CPU, GPU, Graphics & Video Modules, Vision Processor
View Details

GSHARK

GSHARK is part of the TAKUMI line of GPU IPs known for its compact size and ability to richly enhance display graphics in embedded systems. Developed for devices like digital cameras, this IP has demonstrated an extensive record of reliability with over a hundred million units shipped. The proprietary architecture offers exceptional performance with low power usage and minimal CPU demand, enabling high-quality graphics rendering typical of PCs and smartphones.

TAKUMI Corporation
2D / 3D, GPU, Processor Core Independent
View Details

GV380

The GV380 is a 2D vector graphics GPU optimized for low CPU load and enhanced pixel processing. It conforms to the OpenVG 1.1 standard, making it ideal for applications requiring high-quality vector graphics rendering. This IP enables efficient graphic processing for embedded systems, ensuring that even resource-limited environments can enjoy sophisticated graphical interfaces.

TAKUMI Corporation
2D / 3D, GPU
View Details

High-Speed PLL

The High-Speed Phase-Locked Loop (PLL) is a versatile frequency synthesizer designed to accommodate a broad range of applications. Offering a clock frequency range from 100 MHz to 350 MHz, with VCO capabilities extending up to 3.2 GHz, this PLL ensures precise timing synchronization essential for high-speed data communications and processing. By providing output frequencies ranging from 300 MHz to 3.2 GHz, this PLL is ideal for optimizing performance in sophisticated electronic systems, delivering high fidelity and stability across variable operating conditions. Its configurable nature allows for tailored frequency division, supporting both synchronous and source-synchronous setups. Such flexibility and performance make it an indispensable component for enhancing clock system reliability and efficiency in modern digital architectures.

SkyeChip
Samsung, TSMC
12nm, 28nm
Clock Generator, Clock Synthesizer, PLL
View Details
Load more
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt