Log In

All IPs > Interface Controller & PHY > PowerPC

PowerPC Interface Controller & PHY Semiconductor IP

The Interface Controller and PHY category focusing on PowerPC architectures offers semiconductor IP solutions tailored for robust data communication and intricate control system designs. PowerPC, a RISC (Reduced Instruction Set Computing) architecture known for its high performance, is widely utilized in embedded systems, personal computing, and even cutting-edge supercomputers. Our semiconductor IP category under Interface Controller and PHY is specifically crafted to harness the full potential of PowerPC's processing power and efficiency, providing a seamless way to integrate advanced data handling capabilities into your designs.

Within this category, users can find semiconductor IP products that facilitate the integration of PowerPC processors with various communication interfaces, ensuring efficient data exchange between different system components. The PHY (Physical Layer) components are crucial here, as they handle the electrical, mechanical, and procedural interface to the physical medium, supporting the transmission and reception of signals. By focusing on these elements, our IPs help maintain data integrity and optimizes speed across different interface technologies.

Moreover, PowerPC Interface Controllers are integral for developers seeking to streamline the management of data flows and control signals in complex systems. These controllers provide essential functions like DMA (Direct Memory Access), interrupt handling, and protocol conversion, thereby enhancing system performance and reliability. Designed for scalability and versatility, our IPs cater to various market needs, from automotive to industrial and consumer electronics, showcasing the adaptability of PowerPC technology.

Whether you're working on creating highly responsive networking equipment, developing robust industrial automation components, or designing high-performance computing systems, the Interface Controller & PHY solutions for PowerPC architecture offer the capabilities and flexibility required to meet rigorous industry demands. Leverage these semiconductor IPs to achieve unparalleled efficiency and performance in your next project.

All semiconductor IP

GenAI v1

RaiderChip's GenAI v1 is a pioneering hardware-based generative AI accelerator, designed to perform local inference at the Edge. This technology integrates optimally with on-premises servers and embedded devices, offering substantial benefits in privacy, performance, and energy efficiency over traditional hybrid AI solutions. The design of the GenAI v1 NPU streamlines the process of executing large language models by embedding them directly onto the hardware, eliminating the need for external components like CPUs or internet connections. With its ability to support complex models such as the Llama 3.2 with 4-bit quantization on LPDDR4 memory, the GenAI v1 achieves unprecedented efficiency in AI token processing, coupled with energy savings and reduced latency. What sets GenAI v1 apart is its scalability and cost-effectiveness, significantly outperforming competitive solutions such as Intel Gaudi 2, Nvidia's cloud GPUs, and Google's cloud TPUs in terms of memory efficiency. This solution maximizes the number of tokens generated per unit of memory bandwidth, thus addressing one of the primary limitations in generative AI workflow. Furthermore, the adept memory usage of GenAI v1 reduces the dependency on costly memory types like HBM, opening the door to more affordable alternatives without diminishing processing capabilities. With a target-agnostic approach, RaiderChip ensures the GenAI v1 can be adapted to various FPGAs and ASICs, offering configuration flexibility that allows users to balance performance with hardware costs. Its compatibility with a wide range of transformers-based models, including proprietary modifications, ensures GenAI v1's robust placement across sectors requiring high-speed processing, like finance, medical diagnostics, and autonomous systems. RaiderChip's innovation with GenAI v1 focuses on supporting both vanilla and quantized AI models, ensuring high computation speeds necessary for real-time applications without compromising accuracy. This capability underpins their strategic vision of enabling versatile and sustainable AI solutions across industries. By prioritizing integration ease and operational independence, RaiderChip provides a tangible edge in applying generative AI effectively and widely.

RaiderChip
GLOBALFOUNDRIES, TSMC
28nm, 65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

GenAI v1-Q

The GenAI v1-Q from RaiderChip brings forth a specialized focus on quantized AI operations, reducing memory requirements significantly while maintaining impressive precision and speed. This innovative accelerator is engineered to execute large language models in real-time, utilizing advanced quantization techniques such as Q4_K and Q5_K, thereby enhancing AI inference efficiency especially in memory-constrained environments. By offering a 276% boost in processing speed alongside a 75% reduction in memory footprint, GenAI v1-Q empowers developers to integrate advanced AI capabilities into smaller, less powerful devices without sacrificing operational quality. This makes it particularly advantageous for applications demanding swift response times and low latency, including real-time translation, autonomous navigation, and responsive customer interactions. The GenAI v1-Q diverges from conventional AI solutions by functioning independently, free from external network or cloud auxiliaries. Its design harmonizes superior computational performance with scalability, allowing seamless adaptation across variegated hardware platforms including FPGAs and ASIC implementations. This flexibility is crucial for tailoring performance parameters like model scale, inference velocity, and power consumption to meet exacting user specifications effectively. RaiderChip's GenAI v1-Q addresses crucial AI industry needs with its ability to manage multiple transformer-based models and confidential data securely on-premises. This opens doors for its application in sensitive areas such as defense, healthcare, and financial services, where confidentiality and rapid processing are paramount. With GenAI v1-Q, RaiderChip underscores its commitment to advancing AI solutions that are both environmentally sustainable and economically viable.

RaiderChip
TSMC
65nm
AI Processor, AMBA AHB / APB/ AXI, Audio Controller, Coprocessor, CPU, Ethernet, Microcontroller, Multiprocessor / DSP, PowerPC, Processor Core Dependent, Processor Cores
View Details

DisplayPort Transmitter

The DisplayPort Transmitter from Trilinear Technologies is a sophisticated solution designed for high-performance digital video streaming applications. It is compliant with the latest VESA DisplayPort standards, ensuring compatibility and seamless integration with a wide range of display devices. This transmitter core supports high-resolution video outputs and is equipped with advanced features like adaptive sync and panel refresh options, making it ideal for consumer electronics, automotive displays, and professional AV systems. This IP core provides reliable performance with minimal power consumption, addressing the needs of modern digital ecosystems where energy efficiency is paramount. It includes customizable settings for audio and video synchronization, ensuring optimal output quality and user experience across different devices and configurations. By reducing load on the system processor, the DisplayPort Transmitter guarantees a seamless streaming experience even in high-demand environments. In terms of integration, Trilinear's DisplayPort Transmitter is supported with comprehensive software stacks allowing for easy customization and deployment. This ensures rapid product development cycles and aids developers in managing complex video data streams effectively. The transmitter is particularly optimized for use in embedded systems and consumer devices, offering robust performance capabilities that stand up to rigorous real-time application demands. With a focus on compliance and testing, the DisplayPort Transmitter is pre-tested and proven to work seamlessly with a variety of hardware platforms including FPGA and ASIC technologies. This robustness in design and functionality underlines Trilinear's reputation for delivering reliable, high-quality semiconductor IP solutions that cater to diverse industrial applications.

Trilinear Technologies
AMBA AHB / APB/ AXI, Coprocessor, HDMI, Input/Output Controller, PCI, PowerPC, RapidIO, SATA, USB, V-by-One
View Details

APB4 GPIO

The APB4 GPIO core from Roa Logic is a fully parameterized solution designed to provide a customizable number of general-purpose, bidirectional I/O pins. This core enables developers to define the I/O behavior precisely, adapting to a plethora of configurations to meet specific project requirements. It is essential for applications that require extensive interfacing capabilities, ensuring streamlined connectivity across multiple components. The GPIO core supports a range of operational modes, providing the flexibility to handle complex I/O operations. With capabilities like programmable drive strength and individual pin configuration, it offers a high degree of customization that can be tailored to precise application needs. Roa Logic’s offering enhances design functionality and accelerates development timelines by facilitating easy integration and application-specific optimization. This component serves as a cornerstone for designs requiring robust peripheral interaction, catering to both industrial projects and educational purposes. Its adaptability and ease of integration ensure it's an invaluable component in modern electronics design, adhering to the high standards expected in today's interconnected environments.

Roa Logic BV
I/O Library, I2C, Input/Output Controller, Peripheral Controller, PowerPC
View Details

DisplayPort Receiver

Trilinear Technologies has developed a cutting-edge DisplayPort Receiver that enhances digital connectivity, offering robust video reception capabilities necessary for today's high-definition video systems. Compliant with VESA standards, the receiver supports the latest DisplayPort specifications, effortlessly handling high-bandwidth video data necessary for applications such as ultra-high-definition televisions, professional video wall setups, and complex automotive display systems. The DisplayPort Receiver is designed with advanced features that facilitate seamless video data acquisition and processing, including multi-stream transport capabilities for handling multiple video streams concurrently. This is particularly useful in professional display settings where multiple input sources are needed. The core also incorporates adaptive sync features, which help reduce screen tearing and ensure smooth video playback, enhancing user experience significantly. An important facet of the DisplayPort Receiver is its low latency and high-efficiency operations, crucial for systems requiring real-time data processing. Trilinear's receiver core ensures that video data is processed with minimal delay, maintaining the integrity and fidelity of the original visual content. This makes it a preferred choice for high-performance applications in sectors like gaming, broadcasting, and high-definition video conferencing. To facilitate integration and ease of use, the DisplayPort Receiver is supported by a comprehensive suite of development tools and software packages. This makes the deployment process straightforward, allowing developers to integrate the receiver into both FPGA and ASIC environments with minimal adjustments. Its scalability and flexibility mean it can meet the demands of a wide range of applications, solidifying Trilinear Technologies' position as a leader in the field of semiconductor IP solutions.

Trilinear Technologies
AMBA AHB / APB/ AXI, Coprocessor, HDMI, Input/Output Controller, PCI, PowerPC, RapidIO, SATA, USB, V-by-One
View Details

Camera PHY Interface for Advanced Processes

The Camera PHY Interface for Advanced Processes from Curious Corporation is engineered to support advanced imaging needs, optimizing data transfer in demanding environments. This interface excels in high-speed performance, providing robust connectivity for complex camera configurations. It is particularly valuable in applications requiring efficient bandwidth utilization and superior image data handling. Designed with modern imaging demands in mind, the Camera PHY Interface offers compatibility with various camera modules, allowing for seamless integration into diverse systems. Engineers can utilize this interface to enhance image capture capabilities, making it ideal for high-definition multimedia applications. Furthermore, its adaptability to different process nodes ensures that it can meet the rigorous demands of modern technological innovations. The interface's ability to support high-frequency operation while minimizing power consumption makes it suitable for portable and fixed imaging solutions.

CURIOUS Corporation
Samsung, TSMC
10nm, 16nm
Audio Interfaces, Camera Interface, Coder/Decoder, CSC, Interrupt Controller, MIPI, Other, Peripheral Controller, PowerPC, Receiver/Transmitter, USB
View Details

RF-SOI and RF-CMOS Platform for Wireless Communication

Specialized for advanced radio frequency applications, the RF-SOI and RF-CMOS platform merges high-performance substrates with CMOS design flexibility to enable sophisticated wireless communication solutions. SOI (Silicon-On-Insulator) technology in this platform excels in reducing parasitic capacitance, thereby enhancing speed and power efficiency – critical for RF applications where performance must meet stringent wireless standards. This platform offers extensive frequency range support, from sub-GHz to millimeter wave frequencies, making it a suitable choice for cellular infrastructure, IoT devices, and automotive radar systems. By integrating RF-SOI, the solutions achieve low-loss and high linearity, addressing the demands of next-generation wireless networks. The additional benefit of leveraging RF-CMOS provides improved integration capabilities for multi-function devices on a single chip. Tower Semiconductor's platform is augmented by its comprehensive design enablement resources, including standard cell libraries and PDKs, to facilitate efficient design cycles. The enhanced capabilities of the RF-SOI and RF-CMOS platform thus continue to push forward the frontier of wireless technology, supporting the evolution of high-speed data communications.

Tower Semiconductor Ltd.
Tower
28nm, 65nm, 180nm
3GPP-5G, AMBA AHB / APB/ AXI, Digital Video Broadcast, Ethernet, JESD 204A / JESD 204B, MIPI, PLL, PowerPC, RF Modules, USB
View Details

Concrete Surface Layer Degradation Detection System

The Concrete Surface Layer Degradation Detection System addresses the critical need for evaluating the integrity of concrete structures. Utilizing advanced sensor technology, this system can detect and analyze surface layer degradation with high precision. This capability is essential for maintaining the safety and longevity of concrete infrastructures such as bridges, buildings, and pavements. By providing real-time monitoring, the system ensures early detection of potential structural weaknesses. This proactive approach enables timely maintenance and repairs, preventing costly damage and enhancing public safety. It works by employing a series of embedded sensors configured to measure various parameters indicative of surface deterioration. The system’s ability to offer real-time alerts and detailed reports makes it a vital tool for civil engineers and maintenance crews. Adaptable to different environmental conditions and surface types, it represents a versatile solution for modern infrastructure management.

Institute of Electronics and Computer Science
Network on Chip, PowerPC, Sensor
View Details

APIX3 Transmitter and Receiver Modules

The APIX3 Transmitter and Receiver Modules represent the pinnacle of automotive data communication, offering superior bandwidth and versatility for in-car network architectures. Capable of handling up to 12Gbps with quad twisted pair connections, APIX3 supports Ultra High Definition video resolutions across multiple channels concurrently. These modules also feature robust diagnostic and cable monitoring capabilities, ensuring uninterrupted operation and ease of maintenance in automotive environments.

INOVA Semiconductors GmbH
AMBA AHB / APB/ AXI, ATM / Utopia, CAN, D2D, Ethernet, Fibre Channel, Gen-Z, Graphics & Video Modules, HDMI, LIN, PowerPC, Receiver/Transmitter, Safe Ethernet, SAS, USB, V-by-One
View Details

INAP590T

The INAP590T is a transmitter module embedded within the APIX3 framework, delivering unparalleled data transfer capabilities for high-resolution automotive display systems. It supports HDMI 1.4a video interface and integrates seamlessly with existing in-car networks. This module offers advanced features such as scalable bandwidth, cable adaptability, and error correction, making it a reliable choice for next-generation infotainment architectures.

INOVA Semiconductors GmbH
Arbiter, ATM / Utopia, CAN, Ethernet, Fibre Channel, Gen-Z, Graphics & Video Modules, HDMI, LIN, PowerPC, Receiver/Transmitter, Safe Ethernet, USB, UWB, V-by-One
View Details

SerDes

The SerDes telecommunications technology by Actt is crafted to efficiently transmit high-speed serial data signals over long distances with minimal degradation. SerDes, standing for Serializer/Deserializer, converts parallel data into serial form and vice versa, making it a critical component in high-speed communication applications. This IP supports a range of data rates and is designed to cater to the needs of modern high-performance systems requiring optimal data throughput. It ensures minimal signal loss and high data integrity, crucial for applications in data centers and high-speed computing networks. With its ability to handle extensive data transfer with precision, SerDes provides an essential link in maintaining robust communication channels. It is an adaptable solution that ensures scalability, meeting the ever-evolving demands of data processing environments.

Analog Circuit Technology Inc.
TSMC, UMC
28nm, 65nm
D2D, PCI, PowerPC, RapidIO, SAS, SATA, USB
View Details

DB9000-AXI Multi-Channel DMA Controller

This multi-channel DMA controller is crafted for handling multiple data streams efficiently, supporting from 1 to 16 channels and slated for future enhancements up to 256 channels. It includes dedicated DMA Read and Write controllers to maximize data throughput and provides options for FIFO buffering, ensuring seamless integration with various memory and peripheral systems. With the flexibility to manage diverse data setups effectively, the DB9000-AXI excels in optimizing system performance within complex digital infrastructures.

Digital Blocks
AMBA AHB / APB/ AXI, DDR, DMA Controller, PowerPC, SD, SDRAM Controller, SRAM Controller, USB
View Details

SPI IP

The SPI IP is a versatile component designed to manage high-speed data exchanges in embedded systems through the Serial Peripheral Interface standard. It supports flexible configurations and high clock rates, increasing its effectiveness in various applications requiring rapid data transfers. By enabling efficient communication across multiple devices, the SPI IP enhances system functionality and performance. It facilitates robust and reliable interaction between components, crucial for complex electronics requiring responsive and synchronized operations. The design emphasizes energy efficiency without sacrificing performance, thus offering optimized power usage crucial for portable devices. The SPI IP's adaptability ensures it can be seamlessly integrated into diverse technological environments, supporting devices in automotive, telecommunications, and consumer electronics sectors.

Logic Design Solutions
Multi-Protocol PHY, PowerPC
View Details

32G UCIe PHY

The 32G UCIe PHY from Global Unichip Corp. represents a significant leap in physical layer technologies, designed to meet the demands of high-speed data communication. Targeting next-generation connectivity standards, this PHY is vital for boosting data throughput in interconnected systems, particularly those foundational to computing and networking architectures. Supporting a broad range of process technologies, this PHY offers exceptional versatility and performance, catering to extensive application needs. Its design ensures robust data integrity and minimal signal degradation, essential for maintaining high performance in data-critical environments such as data centers and enterprise networks. Engineered for seamless integration, the 32G UCIe PHY supports rapid deployment and compatibility with a diverse set of systems. Additionally, its enhanced signal processing capabilities make it suitable for applications where precision and high-quality data transmission are paramount, ensuring comprehensive support for modern technological demands.

Global Unichip Corp.
TSMC
3nm, 5nm
AMBA AHB / APB/ AXI, D2D, Network on Chip, Other, PowerPC, SATA, VESA
View Details
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt