All IPs > Multimedia > H.264
In today's digital age, the demand for high-quality video streaming and broadcasting is ever-growing. H.264 semiconductor IPs provide a robust foundation for efficiently compressing and decompressing video data, enabling seamless and high-performance multimedia applications. As a widely-adopted video coding standard, H.264 is integral in the delivery of clear, crisp images while minimizing bandwidth usage and storage requirements.
The H.264 standard is known for its high compression efficiency, allowing developers to create video solutions that deliver superior image quality without significant resource expenditure. This is particularly crucial for applications such as video conferencing, digital TV broadcasting, and online video streaming services. H.264 semiconductor IPs are designed to be flexible and reliable, supporting a broad range of devices from mobile gadgets to high-end broadcasting systems.
Products in the H.264 semiconductor IP category include a variety of encoders and decoders, optimized for different performance levels and integration requirements. These IPs are essential components for companies looking to enhance their multimedia offerings while ensuring interoperability with existing systems. Whether you are developing software for video editing applications or hardware for digital media broadcasting, H.264 IPs offer scalable solutions that meet diverse technical demands.
With advancements in video technology, the importance of efficient semiconductor IPs like H.264 continues to rise. By integrating these IPs into your products, you can tap into the potential of high-definition video experiences, ensuring that your users enjoy smooth, buffer-free streaming and playback. Explore our range of H.264 semiconductor IPs to find the right fit for your multimedia projects, enabling your technology to reach its full potential in today's competitive digital landscape.
aiSim 5 is a state-of-the-art automotive simulation platform designed for ADAS and autonomous driving testing. Recognized as the world's first ISO26262 ASIL-D certified simulator, it offers unparalleled accuracy and determinism in simulating various driving scenarios and environmental conditions. The simulator integrates AI-based digital twin technology and an advanced rendering engine to create realistic traffic scenarios, helping engineers verify and validate driver assistance systems. Harnessing powerful physics-based simulation capabilities, aiSim 5 replicates real-world phenomena like weather effects and complex traffic dynamics with precision. By offering a comprehensive set of 3D assets and scenarios, it allows for the extensive testing of systems in both typical and edge conditions. With its flexible and open architecture, aiSim 5 can seamlessly integrate into existing testing toolchains, supporting significant variations in sensor configurations and driving algorithms. The platform encourages innovation in simulation methodologies by providing tools for scenario randomization and synthetic data generation, crucial for developing resilient ADAS applications. Additionally, its cloud-ready architecture makes it applicable across various hardware platforms, turning simulation into a versatile resource available on inexpensive or high-end computing configurations alike.
The H.264 FPGA Encoder and CODEC micro footprint cores are a compact and fast solution for video compression, specifically tailored for FPGAs. This licensable IP cores support 1080p60 H.264 Baseline encoding with a single core, offering various configurations such as an H.264 Encoder, CODEC, and I-Frame Only Encoder. These cores are renowned for their small size and rapid processing capabilities, designed to be ITAR compliant for secure applications. Developers can customize these cores to achieve desired pixel depths and resolutions, ensuring adaptability to diverse project needs. With an exceptionally low 1ms latency at 1080p30, these cores are acclaimed as industry-leading in terms of both size and performance. They enhance efficiency by providing fast video processing solutions without compromising quality. The cores are particularly useful in applications demanding high-speed and high-resolution video compression in FPGA implementations. These H.264 cores come with the option for a low-cost evaluation license, providing a seamless entry into advanced video processing tasks. With customizable features, they represent a versatile choice for engineers working on applications involving intensive video encoding and decoding needs.
High-resolution Image Processing IP Performance 4K60p@400MHz (600MHz for display interface) Features Support various color format : YUV420, YUV422, YUV444, and RGB Up-/Down-scaler x1/8~x8 : selectable scaler algorithm with Bi-cubic and Lanczos Two scalers, connected to DRAM and display/direct I/F respectively, operating at different ratios at the same time (configurable to one scaler option) Color space conversion : YUV2RGB and RGB2YUV, coefficient downloadable Optional features Crop and digital zoom : scaling on cropped region Flip : horizontal and vertical 3rd Party interfaces: such as AFBC v1.2 and PVRIC v4 (support output only) Interface Display Interface : 3 channels for components with vertical/horizontal sync signal (ITU-R BT.601 compatible) Direct Interface (optional feature) : On-the-fly interface based on ready-valid protocol Support CF10 (Chips&Media’s Frame buffer compression) for Chips&Media video codec Support AFBC v1.2 and PVRIC v4 (optional feature) for output of MAPI
The DSC Decoder by Trilinear Technologies delivers high-performance video compression capabilities for applications demanding real-time display stream processing. Encapsulated in robust silicon-proven IP, the decoder supports Display Stream Compression (DSC) standards, allowing for efficient compression and decompression of high-definition video streams. This ensures seamless video quality while optimizing the use of data transmission channels and saving bandwidth. A vital component of modern multimedia systems, the DSC Decoder is particularly valuable in industries where image quality and transmission efficiency are critical, such as in broadcasting, telecommunications, and advanced surveillance systems. By implementing industry-standard interfaces for configuration and operation, the decoder achieves smooth interoperability with a wide range of host systems and devices, simplifying its integration into existing digital infrastructures. Trilinear Technologies' DSC Decoder is optimized for low power consumption without sacrificing performance. This focus on energy efficiency makes it ideal for portable and battery-powered devices that demand prolonged operational times without frequent recharging. Its real-time decoding capability ensures that even high-definition streams up to 16K can be managed effectively, providing high-detail video output in a variety of formats and resolutions. The integration of the DSC Decoder is facilitated by detailed support documentation and software stacks that make it easier for developers to incorporate the IP into systems with varied architectural foundations. Whether deployed in consumer electronics or professional AV installations, this decoder ensures high-quality video output with reduced latency, meeting the demands of modern digital workflows and multimedia needs.
Packetcraft's Bluetooth LE Audio Solutions offer a full suite of host, controller, and LC3 components optimized for seamless transition to Bluetooth LE Audio. The platform supports Auracast broadcast audio and True Wireless Stereo (TWS), making it adaptable to prevalent chipsets and providing flexibility to product companies. The modular design facilitates simplified integration, ensuring companies can leverage advanced audio capabilities in a variety of applications. As Bluetooth audio technology evolves, Packetcraft remains at the leading edge, offering industry-leading solutions that cater to modern audio requirements.
aiData is designed to streamline the data pipeline for developing models for Advanced Driver-Assistance Systems and Automated Driving solutions. This automated system provides a comprehensive method of managing and processing data, from collection through curation, annotation, and validation. It significantly reduces the time required for data processing by automating many labor-intensive tasks, enabling teams to focus more on development rather than data preparation. The aiData platform includes sophisticated tools for recording, managing, and annotating data, ensuring accuracy and traceability through all stages of the MLOps workflow. It supports the creation of high-quality training datasets, essential for developing reliable and effective AI models. The platform's capabilities extend beyond basic data processing by offering advanced features such as versioning and metrics analysis, allowing users to track data changes over time and evaluate dataset quality before training. The aiData Recorder feature ensures high-quality data collection tailored to diverse sensor configurations, while the Auto Annotator quickly processes data for a variety of objects using AI algorithms, delivering superior precision levels. These features are complemented by aiData Metrics, which provide valuable insights into dataset completeness and adequacy in covering expected operational domains. With seamless on-premise or cloud deployment options, aiData empowers global automotive teams to collaborate efficiently, offering all necessary tools for a complete data management lifecycle. Its integration versatility supports a wide array of applications, helping improve the speed and effectiveness of deploying ADAS models.
The DSC Encoder from Trilinear Technologies sets the standard for real-time video compression within digital display and broadcast technologies. Supporting VESA’s Display Stream Compression criteria, this encoder facilitates the efficient compression of high-definition video streams, which is critical for reducing bandwidth usage while maintaining video quality across transmission channels in advanced video systems. Trilinear’s encoder is ideal for numerous applications, ranging from consumer electronics to professional AV systems, where ensuring high-quality video output is paramount. Its robust functionality enables it to handle streams with precision and maintain visual integrity, making it essential for systems that require high-efficiency video compression such as gaming consoles, digital TV, and mobile devices. The DSC Encoder offers a high degree of configurability, providing developers with the flexibility to adapt it to various system requirements. It is equipped with industry-standard interfaces, allowing straightforward integration into existing infrastructure, ensuring compatibility and operational efficiency across different platforms. This versatility makes it well-suited for use in SoC designs and FPGA implementations, broadening its applicability across various technological landscapes. Featuring comprehensive software support and detailed user documentation, Trilinear’s DSC Encoder simplifies the integration process into complex systems, ensuring that developers can tap into its full range of capabilities with ease. Its real-time processing power and optimized energy consumption profile make it a reliable choice for cutting-edge digital video applications, reflecting Trilinear’s commitment to advancing multimedia technology.
The Camera ISP Core is designed to optimize image signal processing by integrating sophisticated algorithms that produce sharp, high-resolution images while requiring minimal logic. Compatible with RGB Bayer and monochrome image sensors, this core handles inputs from 8 to 14 bits and supports resolutions from 256x256 up to 8192x8192 pixels. Its multi-pixel processing capabilities per clock cycle allow it to achieve performance metrics like 4Kp60 and 4Kp120 on FPGA devices. It uses AXI4-Lite and AXI4-Stream interfaces to streamline defect correction, lens shading correction, and high-quality demosaicing processes. Advanced noise reduction features, both 2D and 3D, are incorporated to handle different lighting conditions effectively. The core also includes sophisticated color and gamma corrections, with HDR processing for combining multiple exposure images to improve dynamic range. Capabilities such as auto focus and saturation, contrast, and brightness control are further enhanced by automatic white balance and exposure adjustments based on RGB histograms and window analyses. Beyond its core features, the Camera ISP Core is available with several configurations including the HDR, Pro, and AI variations, supporting different performance requirements and FPGA platforms. The versatility of the core makes it suitable for a range of applications where high-quality real-time image processing is essential.
ASRC-Pro is a high-performance 24-bit multi-channel audio sample rate converter designed to meet the demands of sophisticated audio applications. With an impressive THD+N rating of -130dB, it offers unparalleled audio clarity and minimal distortion. This converter is highly suitable for professional audio systems where precision and high fidelity are paramount. The converter supports asynchronous audio sample conversion, seamlessly managing the transition between varying sample rates across devices. Its fully digital architecture eliminates the need for external PLLs, streamlining integration and reducing complexity. With support for Parallel, Parallel TDM, I2S, Serial TDM, and SPDIF-AES3 interfaces, ASRC-Pro provides comprehensive compatibility for diverse audio configurations. ASRC-Pro is an invaluable asset in environments where maintaining audio signal integrity across different systems is crucial. By utilizing two clocks for synchronous operations, the converter ensures precise timing and synchronization, making it a top choice for audio professionals requiring exceptional audio processing performance.
The QOI Lossless Image Compression Encoder and Decoder from Ocean Logic represents a breakthrough in image compression technology. It boasts a highly efficient implementation of the QOI algorithm, engineered for both high and low-end FPGA devices. This IP core can achieve processing speeds of up to approximately 800 megapixels per second, even in lower-powered configurations like 4K at 30 frames per second. Its design optimizes processing efficiency while maintaining minimal resource usage, making it an excellent choice for applications requiring high-speed image processing with limited power availability. At the heart of the IP is its ability to handle substantial amounts of data swiftly, without significant energy expenditure, which is crucial for embedding in power-sensitive devices. The compression enables versatile application in diverse sectors, from consumer electronics to advanced computing environments where high throughput and rapid data handling are paramount. For developers and engineers, the QOI Lossless Compression IP offers an accessible and reliable means to incorporate state-of-the-art lossless image compression into their products, enhancing their ability to handle image data efficiently while ensuring fidelity and performance remain uncompromised.
The ASRC-Lite is a 16-bit multi-channel audio sample rate converter designed to offer superior audio performance. With a THD+N of -90dB, this converter enables seamless audio conversions across different sample rates, ensuring high fidelity and minimal distortion. Ideal for interfacing digital audio equipment, ASRC-Lite supports multiple audio channels and asynchronous conversion, making it an essential component for professional audio setups. Built on a fully digital design, ASRC-Lite does not require analog components like PLLs, thus simplifying integration into existing systems. The IP core supports multiple standard interfaces including Parallel, Parallel TDM, I2S, Serial TDM, and SPDIF-AES3, providing flexibility to cater to various audio connectivity requirements. The converter uses a two-clock design for synchronous input and output operations, enabling precise audio signal processing. ASRC-Lite is particularly valuable for scenarios where audio equipment operates at differing sample rates, maintaining audio quality and synchronization. By accommodating a wide range of clock frequencies, this converter is engineered to deliver reliable and efficient audio sample rate conversions, ensuring compatibility and quality across audio devices.
The H.265 HEVC Decoder System from Korusys stands out as a high-performance standalone FPGA solution for decoding video efficiently. Adhering to the ITU-T H.265 standard, this decoder supports ultra-low latency decoding for streams up to 4kp60. This makes it ideal for cutting-edge video applications demanding high-definition quality and performance. Available as a packaged offering with the High Performance FPGA PCIe Accelerator Card, it delivers comprehensive video decoding services with exceptional speed and quality.
HEVC/H.265 Main/Main10/ Main Still Picture Profile @L5.2 AVC/H.264 BP/CBP/MP/HP/HP10 @L5.2 Capable of encoding up to 8K ((8192x4096) A 32-bit AMBA3 APB bus for host CPU system control 128-bit AMBA3 AXI for data transfer (Optionally, additional secondary AXI) Latency tolerance Low power consumption Programmability Configurable IP Multi-instances Frame buffer compression (CFrame) Rotation & Mirroring Bit-depth & chroma sub-sample conversion Background detection 3DNR Lambda table QP Map Custom mode decision, etc.
The JPEG Encoder is a versatile and efficient solution for image compression applications. This encoder is designed to handle high-quality image formats, supporting pixel depths of up to 12 bits. It excels in delivering low-latency performance, crucial for applications requiring fast image processing such as those found in machine vision setups. Its capability to function in standard FPGA environments makes it a cost-effective option for diverse projects. The encoder comes in different configurations, each tailored for specific needs. The L1 configuration offers a monochrome multiplex pipeline, capable of operating at a pixel clock rate of 150 MHz, ideal for Spartan6 platforms. For enhanced image quality, the L2 configuration supports dual-pipe processing for high-quality output like YUV422 at frame rates up to 60fps. This configuration can be optimized for higher pixel clocks, up to 200 MHz, on custom platforms. Beyond its encoding prowess, the JPEG Encoder integrates seamlessly within network environments, supporting UDP/Ethernet streaming. This feature is complemented by comprehensive reference designs for camera systems, ensuring robust performance across various platforms. Whether you need a standalone IP or an integrated part of a broader SoC solution, this encoder offers the flexibility and reliability needed in modern digital imaging applications.
The ISDB-T 1-Segment Tuner from RF Integration is specially crafted to cater to digital broadcasting needs, particularly for mobile and handheld devices. This tuner is integral to receiving broadcast signals compliant with the ISDB-T standard, ensuring you have access to digital television and other mobile multimedia services. Designed with emphasis on power efficiency, the tuner is well-suited for use in a variety of portable devices, including smartphones and tablets, where battery life is a critical concern. It manages to combine low power usage with high performance, ensuring clear reception and processing of broadcast signals even in challenging conditions. The tuner's architecture incorporates advanced RF components that facilitate excellent signal acquisition and fidelity, essential for an enjoyable viewing experience. RF Integration's expertise in RF and analog designs is evident in this product, ensuring it stands out in the competitive field of digital broadcast technology. With the capability to handle fluctuating signal conditions, the ISDB-T 1-Segment Tuner is a reliable component for any modern media device.
Ocean Logic has developed an advanced H.264 Baseline Encoder that uses Compressed Frame Store (CFS) technology, offering significant innovations in video encoding. This encoder is particularly noted for its compatibility with existing H.264 decoders and its ability to compress reference frames by a ratio of 8 to 16:1. This compression efficiency effectively reduces the necessity for external DRAM and lessens power demands, a substantial benefit in integrated systems where space and energy are constrained. The proprietary CFS technology is capable of embedding within the chip, enhancing the power and bandwidth advantages of the H.264 encoder. Its high compression capabilities make it particularly suitable for System on Chip (SoC) designs, enabling efficient H.264 encoding of 1080p video at 30 frames per second with both I and P frames, without relying on external memory resources. This self-contained system significantly enhances power efficiency and reliability, making it an optimal solution for devices requiring high-quality video processing without the added burden of separate DRAM chips. Engineers and system designers benefit from the IP's robustness, facilitated by its broad patent protection across key global markets. The IP not only heralds advancements in efficiency but also presents opportunities for integrating superior video encoding capabilities into a variety of applications, from communication devices to distributed video systems.
The J1 core cell is a remarkably small and efficient audio decoder that manages Dolby Digital, AC-3, and MPEG audio decompression. With a design that occupies only 1.0 sqmm of silicon area using 0.18u CMOS technology, it delivers a robust solution for decoding 5.1 channel dolby bitstreams and supports data rates up to 640kb/s. The J1 produces high-quality stereo outputs, both normal and Pro-Logic compatible, from Dolby Digital and MPEG-encoded audio, ideal for set-top boxes and DVD applications.
StreamDSP's MIPI Video Processing Pipeline is crafted for seamless integration into advanced embedded systems, offering a turnkey solution for video handling and processing. It supports the MIPI CSI-2 and DSI-2 standards, allowing it to process various video formats and resolutions efficiently, including ultra-high-definition video. The architecture is designed to work with or without frame buffering, depending on latency needs, enabling system designers to tailor performance to specific application requirements. This flexibility ensures that StreamDSP's video pipeline can handle the demands of cutting-edge video applications like real-time video analysis and broadcast video streaming, while maintaining optimal resource usage.
Video Codec Standard AV1: Main/High profile @ L6 Main tier 50Mbps Professional profile except 12-bit @ L6 Main tier 50Mbps Mono/YUV420/YUV422/YUV444 8-/10-bit HEVC/H.265: Main/Main 10/Main 4:2:2 10 profile @ L6 High tier Main 4:4:4/Main 4:4:4 10 profile @ L6 High tier (Only support 4:2:0 coding tools, high precision weighted prediction, and chroma QP offset list) AVC/H.264: Baseline/Constrained Baseline/Main/High/High10 profile @ L6 High 10 Intra/High 4:2:2/High 4:2:2 Intra profile with frame_mbs_only_flag = 1 @ L6 High 4:4:4 Predictive/High 4:4:4 Intra/CAVLC 4:4:4 Intra profile @ L6 with: frame_mbs_only_flag = 1 bit_depth_luma ≤ 10 bit_depth_chroma ≤ 10 frame_mbs_only_flag = 1 and qpprime_y_zero_transform_bypass_flag = 0 VP9 (Decoder only): Profile 0 and Profile 2 (12-bit not supported), YUV420 8/10-bit Performance 4K120fps@500MHz with a dual-core 4K240fps@1GHz or 8K60fps@1GHz with a dual-core Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Rotate/Mirror Down-scaler Crop Encoder Features I/P/B picture coding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer (optional AXI can be used to alleviate bandwidth usage.)
The JPEG XS Encoder/Decoder is designed to provide visually lossless compression with ultra-low latency. This makes it an ideal fit for next-generation applications in 5G environments, large screens, and high-quality video processing. The encoder/decoder couples high efficiency with minimal data delay, maintaining superior image quality while enabling real-time data transfer essential for live broadcasting and professional media dealings.
The IPMX Core is a cutting-edge solution for leveraging the latest AV-over-IP standards within professional AV systems. By adopting the open specification IPMX protocol, Nextera Video enables seamless communication over IP networks, transforming the efficiency of media transport globally. Its foundation on proven standards like SMPTE ST 2110 and NMOS enhances its interoperability and scalability. Designed for versatile video and audio integration, the IPMX Core supports both compressed and uncompressed media, providing flexibility across a spectrum of resolutions up to 8K. This adaptability caters to diverse media landscapes, accommodating different frame rates, color spaces, and sample rates, while maintaining low latency and high-quality delivery. Nextera’s IPMX Core stands at the forefront of AV-over-IP technology, offering essential features like encrypted data transport, asynchronous video support, and industry-standard NMOS control. This makes it a formidable choice for any organization seeking to future-proof its AV infrastructure through robust IP technologies that meet rigorous professional standards.
Zipcores' 4K Video Scaler is engineered to handle ultra-high-definition video scaling applications, offering seamless conversion of video resolutions. This feature-rich scaler supports a pixel clock rate of up to 600 MHz, enabling high-quality video processing necessary for 4K/UHD content, which is increasingly prevalent across multimedia platforms. Designed to operate efficiently without the need for an external frame buffer, it minimizes latency and hardware requirements, making it ideal for real-time video applications. Its compatibility with mid-range FPGA and SoC devices allows for easy integration into systems, ensuring scalability and adaptability across various hardware environments. This core effectively manages input/output interfaces compatible with AXI4-stream, facilitating smooth interoperability within existing infrastructures. The 4K Video Scaler exemplifies innovation in digital video processing, offering a robust solution for developers demanding both performance and efficiency in professional and consumer-level applications.
HEVC/H.265 - Main/Main10 Profile @L5.1 AVC/H.264 - BP/CBP/MP/HP/HP10 Profile @ L5.2 Capable of decoding up to 4K60fps (8192x4096) A 32-bit APB bus and 128-bit AMBA3 AXI buses (w/ additional secondary AXI) Burst Write Back Map converter Low delay Low power consumption Configurable IP Latency tolerance Programmability Multi-instances Frame buffer compression (CFrame) Secondary AXI interfaces Downscaler (on-the-fly mode)
Arasan's MIPI DSI-2 Transmitter IP is a versatile display interface solution designed for high-performance and low-power applications. It supports the efficient integration of display panels with host processors, enabling seamless communication for smooth and high-quality visual output. The transmitter IP offers features like multi-lane support, high-speed data transfer, and error recovery mechanisms, all of which conform to the latest DSI specifications. Power efficiency is prioritized with advancements such as clock gating, making this IP ideal for mobile and battery-powered devices.
BLUEDOT's AV1 Video Encoder is a sophisticated solution tailored for high-resolution gaming and live streaming platforms. Designed to tackle challenges related to increased network bandwidth and encoding latency, this encoder provides a cloud-based AV1 solution driven by advanced semiconductor design techniques. It excels in delivering high-performance encoding, maintaining outstanding video quality, and supporting low-latency operations, thereby making it an ideal choice for cloud gaming environments. Moreover, the encoder's cost-effectiveness ensures that streaming services can scale up their operations without escalating network expenses, fulfilling the demand for premium video experience.
Video Codec Standard HEVC/H.265: Main profile @ L5.1 High tier AVC/H.264: Baseline/Constrained Baseline/Main/High profile @ L5.2 Performance 4K60fps@500MHz Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Encoder Features I/P picture coding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer (Optional AXI can be used to alleviate bandwidth usage.)
Video Codec Standard HEVC: Main/Main Still Picture profile @ L5.1 High tier AVC: Baseline/Constrained Baseline/Main/High profiles @ L5.2 Performance 4K60fps@500MHz Max resolution: 8192 x 4096 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Multi-instances Frame-buffer compression (CFrame) In-loop filter Rotation & Mirroring Bit depth & chroma sample format conversion Lossless coding Background coding MapConverter 3DNR, etc. Interface 32-bit AMBA3 APB bus 128-bit AMBA3 AXI buses Primary AXI interface and an optional secondary AXI interface
The MPEG-H Audio System is an advanced audio codec system designed for television and virtual reality applications. It delivers immersive, high-quality sound that enhances user experiences by providing dynamic and interactive audio environments. This technology is a staple in broadcast and VR industries, known for its ability to offer personalized soundscapes and adjust sound levels and positions in real time. MPEG-H Audio works across various platforms, offering compatibility with modern broadcasting standards, making it a preferred choice for broadcasters seeking to upgrade their audio offerings. Its seamless integration into devices elevates content delivery, supporting the next-generation TV audio standards worldwide and ensuring a comprehensive auditory experience for viewers. Beyond its technical superiority, the MPEG-H Audio System is also recognized for its scalability and adaptiveness in diverse application conditions, ranging from live broadcasts to VR environments. By enabling customizable audio settings, it provides individual listeners with tailored audio experience, making it a cutting-edge tool for content creators focused on maximizing audience engagement through sound.
The AVC Decoder from VYUsync is engineered to provide top-level decoding performance in compliance with AVC (H.264) standards. Supporting up to 4:2:2 color formats and 10-bit pixel depth, this decoder is tailored for full HD video processing environments. It supports resolutions up to 1920x1080p60, making it highly efficient for applications demanding high-quality video rendition. The development of this decoder places a strong emphasis on flexibility and scalability. It is constructed to work seamlessly with a wide array of performance points and is adaptable to numerous video applications. Whether used in broadcasting workflows or in professional video gear, its design ensures efficient handling of high-resolution video data, affording users superior clarity and color precision. Beyond these applications, the AVC Decoder is particularly valuable in environments that require critical video transport solutions, such as remote surveillance systems. Its low-latency capabilities ensure swift transmission and processing of video streams, which is vital for maintaining situational awareness in aerospace, defense, and live streaming contexts.
The HEVC Decoder from VYUsync Design Solutions is a top-tier video decoder built for high performance. It complies with HEVC/H.265 standards, providing up to Main 12 422 Profile compatibility. The HEVC Decoder is specially designed for deployment on a wide variety of target FPGAs. Its capability to handle complex video data efficiently makes it ideal for high-definition video streaming applications, ensuring seamless video playback and advanced video processing. This decoder is flexible, scalable, and tailored to meet the rigorous demands of modern video applications, whether they're for broadcasting, professional video recording, or any high-demand video processing role. Focused on maintaining superior color fidelity, the HEVC Decoder supports the 4:4:4 color format, accommodating larger bit depths to ensure refined and nuanced color reproduction. This makes it exceptionally suited for applications in fields that demand high visual fidelity such as professional film production and medical imaging. The decoder’s design assures low latency, enhancing the responsiveness and effectiveness of visual data transmission, which is particularly critical when real-time processing is necessary. The HEVC Decoder is an invaluable component in mission-critical environments. Its robust performance ensures that it can reliably transport and decode video streams even in high-pressure situations. This decoder is also an asset for companies looking to enhance their current video processing capabilities, offering a highly efficient, field-proven IP that can be integrated seamlessly into existing systems.
Video Codec Standard HEVC: Main/Main Still Picture profile @ L5.1 High tier AVC: Baseline/Constrained Baseline/Main/High profiles @ L5.2 Performance 4K60fps@500MHz Max resolution: 8192 x 4096 Min resolution: 256 x 128 Bit depth: 8-bit Features Multi-instances Frame-buffer compression (CFrame) In-loop filter Rotation & Mirroring Bit depth & chroma sample format conversion Lossless coding Background coding Down-scaler (On-the-fly mode) MapConverter 3DNR, etc. Interface 32-bit AMBA3 APB bus 128-bit AMBA3 AXI buses Primary AXI interface and an optional secondary AXI interface
Video Codec Standard AV1: Main profile @ L5.1 HEVC: Main/Main10 profile, Main/Main 10 Still Picture profile @ L5.1 High tier AVC: Baseline/Constrained Baseline/Main/High/High 10 profile @ L5.2 (Interlaced coding tools are not supported) Performance 4K60fps@500MHz Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Encoder Features I/P/B picture encoding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer * Optional AXI can be used to alleviate bandwidth usage
VISENGI's H.264 Encoder is an advanced video compression solution renowned for its high-performance capabilities. Designed to accommodate modern high-resolution demands, this encoder allows UltraHD 4K 60 encoding on lower-end FPGAs like Spartan/Cyclone and extends to 8K 30fps on mid-range models such as Arria 10 and Zynq. Distinctive for its single-engine design, it provides the lowest latency and highest throughput in the industry, processing over 5.2 pixels per cycle. It supports various profiles such as the High 4:4:4 Predictive Profile, ensuring that full-color fidelity is maintained through options like 4:4:4, 4:2:2, and 4:2:0 inputs. The encoder is engineered to handle multiple inputs simultaneously, up to 32, enhancing its utility in complex systems with a single instance deployment. Its versatility in resolution scaling means it can manage any resolution from QVGA to 8K seamlessly. Real-time variable bit rate (VBR) and constant bit rate (CBR) control offer optimal management of H.264 parameters to meet specific video quality and file size requirements. Interface-wise, the encoder utilizes an AXI-Lite configuration and supports AXI3/4 for data I/O, making it broadly compatible and easy to deploy. Its robust architecture includes embedded DMA engines, optimized pixel input modes, and motion estimation options that contribute to its efficiency and performance. The output aligns with industry standards, encapsulating data in raw .264 byte streams and providing options for reconstructed video outputs.
Video Codec Standard HEVC: Main/Main10 profile @ L6 High tier AVC: Baseline/Constrained Baseline/Main/High/High 10 profile @ L6 (Interlaced coding tools are not supported) Performance 4K120fps@500MHz or 8K60fps@1GHz Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Encoder Features I/P/B picture encoding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer *Optional AXI can be used to alleviate bandwidth usage
The v-MP6000UDX is a versatile visual processing unit designed to power deep learning, computer vision, and video coding needs all through a single, unified architecture. This processor excels at handling high-performance tasks on embedded systems, ensuring efficiency in both power and silicon area utilization. As industries seek to integrate more sophisticated AI-driven capabilities, the v-MP6000UDX stands out by providing a comprehensive solution that runs all forms of embedded computing tasks seamlessly. A significant advantage of the v-MP6000UDX is its ability to manage complex neural networks in real-time, boasting a dynamically programmable nature that surpasses hardwired counterparts in flexibility and longevity. It facilitates the concurrent execution of various computational workflows such as signal and image processing without the traditional need for multiple hardware units, thereby reducing overall system complexity and enhancing power efficiency. The processor's architecture is particularly noteworthy for its scalability, supporting configurations from a minimal core count to over a thousand cores on a single chip. This makes the v-MP6000UDX adaptable for a wide spectrum of applications ranging from low-powered sensors to high-performance computing setups. Its support for multiple software environments and AI frameworks adds an extra layer of versatility, allowing developers to optimize and deploy a broad variety of deep learning models efficiently.
The DVB-S2-LDPC-BCH decoder by Wasiela is engineered to support the Digital Video Broadcasting - Satellite Second Generation (DVB-S2) standard. This IP core employs a combination of low-density parity-check (LDPC) and Bose–Chaudhuri–Hocquenghem (BCH) codes, delivering robust error correction to ensure high-quality satellite broadcasting services. Designed for applications requiring high throughput and error resilience, Wasiela’s decoder enables seamless transmission of high-definition television signals. It supports layered decoding, where an irregular parity check matrix optimizes error correction performance with minimal computational overhead. Its architecture allows for soft decision decoding, improving error correction capability in poor signal conditions, which is crucial for delivering uninterrupted satellite television services. Incorporating this decoder into satellite communication systems ensures a reduction in transmission errors, aligning with the stringent quality requirements of broadcasting networks. It supports the minimum sum algorithm, enhancing computational efficiency and providing a scalable solution for diverse broadcasting needs.
Video Codec Standard HEVC/H.265: Main profile @ L5.1 High tier AVC/H.264: Baseline/Constrained Baseline/Main/High profile @ L5.2 Performance 4K60fps@500MHz with a single-core Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Encoder Features I/P/B picture coding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer (Optional AXI can be used to alleviate bandwidth usage.)
Video Codec Standard AV1: Main profile @ L5.1 Main tier 50Mbps HEVC/H.265: Main/Main 10 profile @ L5.1 High tier AVC/H.264: Baseline/Constrained Baseline/Main/High/High10 profile @ L5.2 (Interlaced coding tools are not supported.) VP9 (Decoder only): Profile 0 and Profile 2 (12-bit not supported) Performance 4K60fps@500MHz with a single-core Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Encoder Features I/P/B picture coding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer (Optional AXI can be used to alleviate bandwidth usage.)
Supported standards for Decoder ISO/IEC23008-2 HEVC/H.265, ITU-T Rec. H.265 Main/Main10 Profile L5.1 AVC/H.264 BP/CBP/MP/HP/HP10 Profile @ L5.2 AVS2 Main/Main10 Profile @L8.0.60 Main performance 4K(3840x2160) 60fps @ 450MHz Max. resolution: 8192x4096 Features Frame buffer compression (CFrame) Embedded Post-processing (w/Down-scaler) Low delay Low power consumption Latency tolerance Interface AMBA 32-bit APB interface for Host CPU AMBA 128-bit AXI interface for the external memory
Video Codec Standard AV1: Main profile @ L6 Main tier 50Mbps HEVC/H.265: Main/Main10 profile @ L6 High tier AVC/H.264: Baseline/Constrained Baseline/Main/High/High 10 profile @ L6 VP9 (Decoder only): Profile 0 and Profile 2 (12-bit not supported) Performance 4K120fps@500MHz with a dual-core 4K240fps@1GHz or 8K60fps@1GHz with a dual-core Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Encoder Features I/P/B picture coding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer (Optional AXI can be used to alleviate bandwidth usage.)
Brief specification HEVC/H.265 Main/Main10 Profile @L5.1 AV1 Main Profile @ L5.1 VP9 Profile 0/ Profile 2 @L5.1 AVC/H.264 BP/CBP/MP/HP/HP10 Profile @ L5.2 AVS2 Main/Main10 Profile @L8.0.60 Main performance 4K(3840x2160) 60fps @ 450MHz Max. resolution: 8192x4096 System I/F A 32-bit APB bus and 128-bit AMBA3 AXI buses (w/additional Secondary AXI) Burst Write Back (BWB) Features Frame buffer compression (CFrame) Embedded Post-processing (w/Down-scaler) Low delay Low power consumption Latency tolerance
The H.265 Codec from XtremeSilica delivers advanced video compression technology suitable for modern digital video applications. It enables efficient streaming and storage by significantly reducing bandwidth requirements, while maintaining high visual quality. Ideal for video broadcasting, streaming services, and mobile video applications, this codec supports high-resolution video formats, enhancing viewing experiences on a variety of platforms. Its enhancement over previous codecs ensures more efficient processing and lower data costs, facilitating HD and UHD content proliferation.
Video Codec Standard AV1: Main profile @ L6 High tier HEVC/H.265: Main/Main10 profile @ L6 High tier AVC/H.264: Baseline/Constrained Baseline/Main/High/High 10 profile @ L6 Performance 4K120fps@500MHz with a dual-core 4K240fps@1GHz or 8K60fps@1GHz with a dual-core Max resolution: 8192 x 8192 Min resolution: 256 x 128 Bit depth: 8-/10-bit depth Features Frame buffer compression (FBC) Multi-instances 3rd Party I/F Bit depth and YUV format conversion of the source picture Encoder Features I/P/B picture coding Picture/Block level of rate control ROI coding Background coding Interface AMBA3 32-bit APB I/F for host I/F AMBA3 128-bit AXI for data transfer (Optional AXI can be used to alleviate bandwidth usage.)
Turbo Encoder and Decoder cores by Creonic serve a crucial role in elevating communication system performance, particularly within telemetry and telecommand systems. These cores are developed to comply with high integration standards and are finely tuned for applications within CCSDS and DVB-RCS standards, among others. Designed to function efficiently in space and legacy communication systems, the Turbo IP cores offer critical reliability in environments where radiation hardening is necessary. By facilitating robust error correction, these cores improve the overall resilience and integrity of data transmission, ensuring accurate and reliable communication even under challenging conditions. Creonic's Turbo solutions are optimized for performance, providing developers with flexible tools to implement in various communication protocols. The cores' compatibility with multiple standards highlights their versatility and market adaptability, making them essential components for advanced technological ecosystems in space communication and beyond.
Video Codec Standard HEVC: Main/Main Still Picture profile @ L5.1 High tier AVC: Baseline/Constrained Baseline/Main/High profiles @ L5.2 Performance 4K60fps@500MHz Max resolution: 8192 x 4096 Min resolution: 256 x 128 Bit depth: 8-bit Features Multi-instances Frame-buffer compression (CFrame) In-loop filter Rotation & Mirroring Bit depth & chroma sample format conversion Lossless coding Background coding 3DNR, etc. Interface 32-bit AMBA3 APB bus 128-bit AMBA3 AXI buses Primary AXI interface and an optional secondary AXI interface
This video DAC specializes in converting digital video signals to analog, ensuring seamless video playback with high clarity. It's suitable for a range of applications from broadcast to consumer electronics, providing dynamic visual performance in converting electronic signals for display devices.
The Low Power ARM AV Player by Atria Logic integrates cutting-edge video playback capabilities into a power-efficient module suitable for numerous industrial and consumer applications. Featuring a dual-core ARM Cortex A9 setup on a Xilinx Zynq-Z7010 platform, this AV player focuses on optimizing H.264 video decoding, ensuring that applications in digital signage, automotive infotainment, and VR systems can enjoy seamless playback. The architecture facilitates maximum programmable efficiency, fully utilizing built-in ARM and Neon DSP capabilities and leaving FPGA resources free for additional functionality. Designed with an emphasis on energy saving, it meets the requirements of cost-sensitive applications without compromising on performance.
Decoding/Encoding Tools Support Extended Sequential ISO/IEC 10918-1 JPEG compliance Support one or three color components Three components in a scan (interleaved only) 8-bit and 12-bit samples for each component Support 4:2:0, 4:2:2, 4:4:0, 4:4:4 and 4:0:0 color formats Max. six 8x8 blocks in one MCU Support NV12/NV16/NV24 (CbCr Interleaved), NV21/NV61/NV42 (CrCb Interleaved) Support from 16 x 16 to 32K x 32K (32,768 x 32,768) image size Packed mode is supported 12-bit PPM format is supported Value-added Features Partial mode for encoding and decoding On-the-fly rotator/mirror ROI(Region of Interest) for decoding On-the-fly downsampler for decoding Color format converting for decoding Performance Decode up to 290M pix/s for 4:2:0 color format Encode up to 290M pix/s for 4:2:0 color format Operating clock frequency: 200MHz Ease of integration AMBA 32-bit APB (w/ PREADY) interface for communication with a host processor AMBA 64-bit AXI interface for the external memory
Designed for applications where power efficiency and low latency are critical, the H.264 Low Power and Low Latency Hardware Video Decoder stands out by implementing baseline Profile decoding up to Level 4.1 for full HD content. Emphasizing error resilience capabilities, such as Flexible Macroblock Ordering and Arbitrary Slice Ordering, makes it robust for unpredictable networks often encountered in industrial and consumer electronics. The underlying hardware architecture, compatible with either FPGA or ASIC, supports versatile integrations, ensuring cross-platform functionality. Featuring low power designs targeted at mobile applications, the decoder becomes a preferred choice in environments like digital signage, remote surveillance, and in-flight entertainment systems.
HEVC/H.265 Main/Main10 Profile @L5.1 AVC/H.264 BP/CBP/MP/HP/HP10 Profile @ L5.2 VP9 Profile 0/Profile 2 (HBD) AVS2 Main10 Profile @L8.0.60 Capable of decoding up to 4Kp60 (8192x4096) A 32-bit APB bus and 128-bit AMBA3 AXI buses (w/ additional secondary AXI) Burst Write Back Map converter Low delay Low power consumption Configurable IP Latency tolerance Programmability Multi-instances Frame buffer compression (CFrame) Downscaler (on-the-fly mode)
Join the world's most advanced semiconductor IP marketplace!
It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!
No credit card or payment details required.
Join the world's most advanced AI-powered semiconductor IP marketplace!
It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!
Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!