Log In

All IPs > Wireless Communication > Digital Video Broadcast

Digital Video Broadcast Semiconductor IP Solutions

The Digital Video Broadcast (DVB) semiconductor IP category comprises an array of IP cores specifically tailored to facilitate reliable and efficient video broadcasting over wireless communication networks. As the demand for high-quality video content continues to rise, the need for robust broadcasting solutions that can handle diverse environments and large audiences becomes crucial. Our collection includes IPs that cater to emerging and established digital broadcasting standards, ensuring versatility and compliance with international specifications.

These semiconductor IPs empower developers to integrate advanced video broadcast capabilities into their next-generation wireless communication products, such as set-top boxes, digital televisions, and mobile broadcasting devices. By leveraging state-of-the-art modulation and error correction techniques, our DVB semiconductor IP offerings streamline the delivery of high-definition and standard-definition video content over various frequencies and platforms. This inclusivity is crucial for manufacturers aiming to capture a broad market share across different regions and user bases.

Moreover, our DVB semiconductor IP solutions are designed with scalability and adaptability in mind. They enable easy integration into diverse broadcasting systems, supporting functionalities such as video encoding, multiplexing, and transmission over wireless channels. This adaptability not only shortens the development cycle but also ensures that the products remain future-proof, allowing manufacturers to deliver cutting-edge features to end-users without extensive redesigns.

Whether you are developing a niche video broadcasting application or a mainstream media distribution product, our Digital Video Broadcast semiconductor IPs provide the essential building blocks needed to ensure high performance, reliability, and compatibility. With a focus on innovation and efficiency, these IPs help you meet the stringent requirements of modern wireless broadcast environments, paving the way for the next wave of digital media consumption experiences.

All semiconductor IP

Akida Neural Processor IP

Akida's Neural Processor IP represents a leap in AI architecture design, tailored to provide exceptional energy efficiency and processing speed for an array of edge computing tasks. At its core, the processor mimics the synaptic activity of the human brain, efficiently executing tasks that demand high-speed computation and minimal power usage. This processor is equipped with configurable neural nodes capable of supporting innovative AI frameworks such as convolutional and fully-connected neural network processes. Each node accommodates a range of MAC operations, enhancing scalability from basic to complex deployment requirements. This scalability enables the development of lightweight AI solutions suited for consumer electronics as well as robust systems for industrial use. Onboard features like event-based processing and low-latency data communication significantly decrease the strain on host processors, enabling faster and more autonomous system responses. Akida's versatile functionality and ability to learn on the fly make it a cornerstone for next-generation technology solutions that aim to blend cognitive computing with practical, real-world applications.

BrainChip
AI Processor, Coprocessor, CPU, Digital Video Broadcast, Network on Chip, Platform Security, Processor Core Independent, Vision Processor
View Details

Akida 2nd Generation

The second-generation Akida platform builds upon the foundation of its predecessor with enhanced computational capabilities and increased flexibility for a broader range of AI and machine learning applications. This version supports 8-bit weights and activations in addition to the flexible 4- and 1-bit operations, making it a versatile solution for high-performance AI tasks. Akida 2 introduces support for programmable activation functions and skip connections, further enhancing the efficiency of neural network operations. These capabilities are particularly advantageous for implementing sophisticated machine learning models that require complex, interconnected processing layers. The platform also features support for Spatio-Temporal and Temporal Event-Based Neural Networks, advancing its application in real-time, on-device AI scenarios. Built as a silicon-proven, fully digital neuromorphic solution, Akida 2 is designed to integrate seamlessly with various microcontrollers and application processors. Its highly configurable architecture offers post-silicon flexibility, making it an ideal choice for developers looking to tailor AI processing to specific application needs. Whether for low-latency video processing, real-time sensor data analysis, or interactive voice recognition, Akida 2 provides a robust platform for next-generation AI developments.

BrainChip
11 Categories
View Details

HOTLink II Product Suite

The HOTLink II Product Suite by Great River Technology is tailored for mission-critical avionics systems requiring robust data communication. It enables seamless data transfer and ensures consistent performance under high-stress operational environments. This suite incorporates advanced technologies to handle complex data streams effectively. It includes component options that enhance data throughput and communication efficiency, meeting stringent industry standards for avionics platforms. Designed with precision, the HOTLink II suite supports the integration and management of large datasets, ensuring that avionics systems can perform efficiently and reliably, crucial for modern aircraft and defense applications.

Great River Technology, Inc.
15 Categories
View Details

mmWave PLL

This mmWave PLL is engineered to deliver exceptional performance in high-frequency applications, such as mmWave communications and advanced radar systems. The IP offers remarkable frequency synthesis capabilities, essential for the operation of modern communication networks and sensors, including the growing 5G infrastructure and automotive radar technologies. The design incorporates mechanisms to optimize phase noise and enhance frequency stability, which are critical in minimizing signal distortion in high-bandwidth transmissions. This PLL is compact yet powerful, making it an excellent choice for systems where space and performance are at a premium. Suitable for integration into a variety of RF and mmWave architectures, the mmWave PLL supports applications across telecommunications, automotive, and beyond. It helps designers achieve superior system performance while maintaining low latency and high data throughput.

CoreHW
Intel Foundry, Samsung
5nm, 7nm
3GPP-5G, Clock Synthesizer, Digital Video Broadcast, DLL, PLL, Power Management, RF Modules
View Details

Polar ID Biometric Security System

Polar ID from Metalenz offers a cutting-edge face unlock solution, using advanced meta-optic technology to provide secure, high-resolution facial recognition capabilities. It captures the unique "polarization signature" of a human face, making it resistant to both 2D photos and sophisticated 3D masks. Polar ID operates efficiently in a variety of lighting conditions, from bright daylight to dark environments, ensuring its utility extends across all smartphone models without sacrificing security or user experience. This technology replaces complex structured light modules, incorporating a single near-infrared polarization camera and active illumination source. It significantly reduces costs and footprint, supporting a broad adoption across hundreds of millions of mobile devices. With its low price point and high performance, Polar ID elevates smartphone security, offering robust protection for digital transactions and identity verification. By enabling this on an embedded platform with compatibility for Qualcomm's Snapdragon processors, Metalenz ensures widespread applicability. The key advantage of Polar ID is its affordability and ease of integration, as it eliminates the need for larger, more intrusive notches in phone designs. Its sophisticated polarization sensing means secure authentication is possible even if the user wears sunglasses or masks. Polar ID sets a new benchmark in smartphone security by delivering convenience and enhanced protection, marking it as the first polarization sensor available for smartphones.

Metalenz Inc.
13 Categories
View Details

D2D® Technology - Direct-to-Data RF Conversion

D2D® Technology, developed by ParkerVision, is a revolutionary approach to RF conversion that transforms how wireless communication operates. This technology eliminates traditional intermediary stages, directly converting RF signals to digital data. The result is a more streamlined and efficient communication process that reduces complexity and power consumption. By bypassing conventional analog-to-digital conversion steps, D2D® achieves higher data accuracy and reliability. Its direct conversion approach not only enhances data processing speeds but also minimizes energy usage, making it an ideal solution for modern wireless devices that demand both performance and efficiency. ParkerVision's D2D® technology continues to influence a broad spectrum of wireless applications. From improving the connectivity in smartphones and wearable devices to optimizing signal processing in telecommunication networks, D2D® is a cornerstone of ParkerVision's technological offerings, illustrating their commitment to advancing communication technology through innovative RF solutions.

ParkerVision, Inc.
3GPP-5G, 3GPP-LTE, 802.11, A/D Converter, AMBA AHB / APB/ AXI, CAN, Coder/Decoder, Digital Video Broadcast, Platform Security, PLL, Receiver/Transmitter, RF Modules, USB, UWB, W-CDMA
View Details

LightningBlu - High-Speed Rail Connectivity

LightningBlu is a state-of-the-art multi-gigabit connectivity solution for high-speed rail networks, delivering continuous high-speed data transfer between trackside and train systems. This innovative solution works within the mmWave spectrum of 57-71 GHz and is certified for long-term, low-maintenance deployment. It seamlessly integrates with existing trackside networks to provide a stable, high-capacity communication bridge essential for internet access, entertainment, and real-time information services aboard high-speed trains. The LightningBlu system includes robust trackside nodes and compact train-top nodes designed for seamless installation, significantly enhancing operational efficiencies and passenger experience by providing internet speeds superior to traditional mobile broadband services. With aggregate throughputs reaching around 3 Gbps, LightningBlu sets the standard for rail communications by supporting speeds at which data demands are met with ease. Crucially, LightningBlu is a key component in transforming the railway telecommunications landscape, offering upgraded technology that enables uninterrupted and enhanced passenger digital services even in the busiest railways across the UK and USA. Through its advanced mmWave technology, it ensures that the connectivity needs of the modern commuter are met consistently and effectively, paving the way for a new era in transit communication.

Blu Wireless Technology Ltd.
GLOBALFOUNDRIES, TSMC
28nm, 180nm
3GPP-5G, 3GPP-LTE, 802.16 / WiMAX, Bluetooth, CAN, Digital Video Broadcast, Ethernet, Gen-Z, I2C, Optical/Telecom, RF Modules, UWB, V-by-One, W-CDMA, Wireless Processor
View Details

aiData

aiData is designed to streamline the data pipeline for developing models for Advanced Driver-Assistance Systems and Automated Driving solutions. This automated system provides a comprehensive method of managing and processing data, from collection through curation, annotation, and validation. It significantly reduces the time required for data processing by automating many labor-intensive tasks, enabling teams to focus more on development rather than data preparation. The aiData platform includes sophisticated tools for recording, managing, and annotating data, ensuring accuracy and traceability through all stages of the MLOps workflow. It supports the creation of high-quality training datasets, essential for developing reliable and effective AI models. The platform's capabilities extend beyond basic data processing by offering advanced features such as versioning and metrics analysis, allowing users to track data changes over time and evaluate dataset quality before training. The aiData Recorder feature ensures high-quality data collection tailored to diverse sensor configurations, while the Auto Annotator quickly processes data for a variety of objects using AI algorithms, delivering superior precision levels. These features are complemented by aiData Metrics, which provide valuable insights into dataset completeness and adequacy in covering expected operational domains. With seamless on-premise or cloud deployment options, aiData empowers global automotive teams to collaborate efficiently, offering all necessary tools for a complete data management lifecycle. Its integration versatility supports a wide array of applications, helping improve the speed and effectiveness of deploying ADAS models.

aiMotive
AI Processor, AMBA AHB / APB/ AXI, Audio Interfaces, Content Protection Software, Digital Video Broadcast, Embedded Memories, H.264, Processor Core Dependent, Vision Processor
View Details

ntRSD Configurable Reed Solomon Decoder

ntRSD core implements a time-domain Reed-Solomon decoding algorithm. The core is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSD core supports erasure decoding thus doubling its error correction capability. The core also supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.11, 802.16 / WiMAX, Bluetooth, Digital Video Broadcast, Error Correction/Detection, Ethernet, Optical/Telecom
View Details

Hyperspectral Imaging System

The Hyperspectral Imaging System offers advanced solutions for capturing detailed spectral information beyond the visible range. This system provides unmatched access to spectral imaging, making it ideal for applications requiring precise detail, such as environmental monitoring and industrial inspection. Hyperspectral imaging divides the spectrum into many bands, delivering a richer data set that enhances material identification, classification, and analysis. This technology is pivotal where high precision in spectral analysis is necessary, aiding sectors such as agriculture and defense. Capable of capturing spectral data in high resolution across multiple wavelengths, the system's applications extend to medical fields, offering improved diagnostics and insights into biological samples. Integrating state-of-the-art CMOS technology, it ensures fast, accurate data acquisition with lower power consumption.

Imec
TSMC
22nm
14 Categories
View Details

ntRSE Configurable Reed Solomon Encoder

ntRSE core implements the Reed Solomon encoding algorithm and is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It also supports varying on the fly shortened codes. Therefore any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSE core supports continuous or burst decoding. The implementation is very low latency, high speed with a simple interface for easy integration in SoC applications.

Noesis Technologies P.C.
All Foundries
All Process Nodes
802.16 / WiMAX, Bluetooth, Digital Video Broadcast, Error Correction/Detection, Ethernet, Optical/Telecom
View Details

Cyclone V FPGA with Integrated PQC Processor

The Cyclone V FPGA with Integrated PQC Processor by ResQuant is a specialized product that comes pre-equipped with a comprehensive NIST PQC cryptography suite. This FPGA is tailored for applications requiring a robust proof-of-concept for quantum-safe implementations. It ensures seamless integration into existing systems, providing a practical platform for testing and deployment in quantum-secure environments. This product is available at a competitive price and represents an ideal starting point for entities looking to explore and adopt quantum-resilient technologies. Its configuration allows for straightforward implementation in diverse hardware infrastructures while offering a reliable option for organizations aiming to stay ahead in the evolving cyber security landscape. By incorporating the latest in cryptographic standards and ensuring vendor independence, the Cyclone V FPGA with Integrated PQC Processor by ResQuant effectively bridges current hardware technologies and future-proof security needs. It supports industry-wide applications, from IoT and ICT to automotive and military sectors, underscoring ResQuant's versatility in hardware security solutions.

ResQuant
All Foundries
All Process Nodes
13 Categories
View Details

Energy Sampling Technology - RF Receiver Solutions

ParkerVision's Energy Sampling Technology is a state-of-the-art solution in RF receiver design. It focuses on achieving high sensitivity and dynamic range by implementing energy sampling techniques. This technology is critical for modern wireless communication systems, allowing devices to maintain optimal signal reception while consuming less power. Its advanced sampling methods enable superior performance in diverse applications, making it a preferred choice for enabling efficient wireless connectivity. The energy sampling technology is rooted in ParkerVision's expertise in matched filter concepts. By applying these concepts, the technology enhances the modulation flexibility of RF systems, thereby expanding its utility across a wide range of wireless devices. This capability not only supports devices in maintaining consistent connectivity but also extends their battery life due to its low energy requirements. Overall, ParkerVision's energy sampling technology is a testament to their innovative approach in RF solutions. It stands as an integral part of their portfolio, addressing the industry's demand for high-performance and energy-efficient wireless technology solutions.

ParkerVision, Inc.
3GPP-5G, 3GPP-LTE, 802.11, A/D Converter, Analog Front Ends, Analog Subsystems, Coder/Decoder, Digital Video Broadcast, OBSAI, Receiver/Transmitter, RF Modules, USB, UWB, W-CDMA
View Details

RF-SOI and RF-CMOS Platform for Wireless Communication

Specialized for advanced radio frequency applications, the RF-SOI and RF-CMOS platform merges high-performance substrates with CMOS design flexibility to enable sophisticated wireless communication solutions. SOI (Silicon-On-Insulator) technology in this platform excels in reducing parasitic capacitance, thereby enhancing speed and power efficiency – critical for RF applications where performance must meet stringent wireless standards. This platform offers extensive frequency range support, from sub-GHz to millimeter wave frequencies, making it a suitable choice for cellular infrastructure, IoT devices, and automotive radar systems. By integrating RF-SOI, the solutions achieve low-loss and high linearity, addressing the demands of next-generation wireless networks. The additional benefit of leveraging RF-CMOS provides improved integration capabilities for multi-function devices on a single chip. Tower Semiconductor's platform is augmented by its comprehensive design enablement resources, including standard cell libraries and PDKs, to facilitate efficient design cycles. The enhanced capabilities of the RF-SOI and RF-CMOS platform thus continue to push forward the frontier of wireless technology, supporting the evolution of high-speed data communications.

Tower Semiconductor Ltd.
Tower
28nm, 65nm, 180nm
3GPP-5G, AMBA AHB / APB/ AXI, Digital Video Broadcast, Ethernet, JESD 204A / JESD 204B, MIPI, PLL, PowerPC, RF Modules, USB
View Details

DVB-Satellite Modulator

The DVB-Satellite Modulator is a high-performance modulator core designed to adhere to DVB-S, DSNG, DVB-S2, and DVB-S2X satellite forward-link specifications. This versatile modulator core is engineered for both broadcasting and interactive applications, accommodating a variety of modulation schemes including (A)PSK. Its robust framework is capable of delivering efficient and reliable operations in challenging satellite communication environments. The modulator's design prioritizes support for advanced satellite communication standards, ensuring its place in future-ready satellite systems.

Commsonic Ltd.
CSC, Digital Video Broadcast, DVB, Ethernet, H.265, Modulation/Demodulation, RF Modules
View Details

ntRSC_IESS IESS compliant Reed Solomon Codec

ntRSC_IESS core is a highly integrated solution implementing a time-domain Reed-Solomon Forward Error Correction algorithm. The core supports several programming features including codeword size, error threshold, number of parity bytes, reverse or forward order of the output, mode of operation (encode, decode or pass-through), shortened code support, erasures or error only decoding. Very low latency, high speed, simple interfacing and programmability make this core ideal for many applications including Intelsat IESS-308, DTV, DBS, ADSL, Satellite Communications, High performance modems and networks.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Digital Video Broadcast, Error Correction/Detection
View Details

PCD03D DVB-RCS and IEEE 802.16 WiMAX Turbo Decoder

The PCD03D Turbo Decoder is adept at handling multiple state decoding for standards such as DVB-RCS and IEEE 802.16 WiMAX. Its core design features an 8-state duobinary decoding structure, facilitating precise and quick signal deconstruction. Additionally, the optional inclusion of a 64-state Viterbi decoder enhances versatility and performance in various environments. This decoder is tailored for applications where agility and high data throughput are critical, making it an invaluable asset in wireless communication infrastructures. The decoder’s architecture supports expansive VHDL core integration, providing durable solutions across FPGA platforms.

Small World Communications
Digital Video Broadcast, Error Correction/Detection, Ethernet, Safe Ethernet
View Details

HDR Core

The HDR Core is engineered to deliver enhanced dynamic range image processing by amalgamating multiple exposures to preserve image details in both bright and dim environments. It has the ability to support 120dB HDR through the integration of sensors like IMX585 and OV10640, among others. This core applies motion compensation alongside detection algorithms to mitigate ghosting effects in HDR imaging. It operates by effectively combining staggered based, dual conversion gain, and split pixel HDR sensor techniques to achieve realistic image outputs with preserved local contrast. The core adapts through frame-based HDR processing even when used with non-HDR sensors, demonstrating flexibility across various imaging conditions. Tone mapping is utilized within the HDR Core to adjust the high dynamic range image to fit the display capabilities of devices, ensuring color accuracy and local contrast are maintained without introducing noise, even in low light conditions. This makes the core highly valuable in applications where image quality and accuracy are paramount.

ASICFPGA
Intel Foundry
28nm
2D / 3D, AV1, Digital Video Broadcast, H.266, Image Conversion, Interrupt Controller
View Details

DVB-S2 Modulator

The DVB-S2 Modulator is engineered to accommodate both DVB-S2 and DVB-S2X satellite forward-link specifications. This high-performance modulator core supports (A)PSK modulation schemes and is particularly suitable for both broadcasting and interactive applications. Its design is focused on delivering advanced functionalities while ensuring compliance with dynamic satellite communication standards. This makes it well-suited for a variety of professional and commercial telecommunications applications. The modulator is ideal for delivering superior broadcast experiences with increased efficiency and reliability.

Commsonic Ltd.
CSC, Digital Video Broadcast, DVB, Ethernet, H.265, Modulation/Demodulation, RF Modules
View Details

PCE04I Inmarsat Turbo Encoder

The PCE04I Inmarsat Turbo Encoder is engineered to optimize data encoding standards within satellite communications. Leveraging advanced state management, it enhances data throughput by utilizing a 16-state encoding architecture. This sophisticated development enables efficient signal processing, pivotal for high-stakes communication workflows. Furthermore, the PCE04I is adaptable across multiple frameworks, catering to diverse industry requirements. Innovation is at the forefront with the option of integrating additional state Viterbi decoders, tailoring performance to specific needs and bolstering reliability in communications.

Small World Communications
CAN, Digital Video Broadcast, Error Correction/Detection, Ethernet, W-CDMA
View Details

ntLDPC_DVBS2X DVBS2/S2X compliant LDPC Codec

The ntLDPC_DVBS2X IP Core is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPC_DVBS2X decoder IP Core may optionally implement one of two approximations of the log-domain LDPC iterative decoding algorithm (Belief propagation) known as either Layered Offset Min-Sum Algorithm or Layered Lambda-min Algorithm. Selecting between the two algorithms presents a decoding performance .vs. system resources utilization trade-off. The core is highly reconfigurable and fully compliant to the DVB-S2 and DVB-S2X standards. Two highly complex off-line preprocessing series of procedures are performed to optimize the DVB LDPC parity check matrices to enable efficient RTL implementation. The ntLDPC_DVBS2X encoder IP implements a 360-bit parallel systematic LDPC IRA encoder. An off-line profiling Matlab script processes the original IRA matrices and produces a set of constants that are associated with the matrix and hardcoded in the RTL encoder. Actual encoding is performed as a three part recursive computation process, where row sums, checksums of all produced rows column-wise and finally transposed parity bit sums are calculated. The ntLDPC_DVBS2X decoder IP implements a 360-bit parallel systematic LDPC layered decoder. Two separate off-line profiling Matlab series of scripts are used to (a) process the original IRA matrices and produce the layered matrices equivalents (b) resolve any possible conflicts produced by the layered transformation. The decoder IP permutes each block’s parity LLRs to become compatible with the layered decoding scheme and stores channel LLRs to processes them in layered format. Each layer corresponds to 360 expanded rows of the original LDPC matrix. Each layer element corresponds to the active 360x360 shifted identity submatrices, within a layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit.

Noesis Technologies P.C.
All Foundries
All Process Nodes
Digital Video Broadcast, Error Correction/Detection
View Details

Cobalt GNSS Receiver

The Cobalt GNSS Receiver represents a paradigm shift in the design of System-on-Chip (SoC) technologies, particularly in its integration of ultra-low-power GNSS capabilities. Developed in collaboration with CEVA DSP and supported by the European Space Program Agency, Cobalt is engineered for efficiency and precision in resource-constrained environments. Its architecture supports standalone and cloud-assisted positioning using Galileo, GPS, and Beidou constellations, optimizing the balance between power consumption and market reach. One of the distinctive features of Cobalt is its ability to integrate seamlessly into NB-IoT SoCs, providing an easy GNSS option that is cost-effective and resource-efficient. By leveraging shared resources between the GNSS receiver and modem, this solution not only reduces the footprint of the device but also enhances its cost efficiency, making it an attractive option for mass-market applications. Critical sectors such as logistics, agriculture, insurance, and even animal tracking benefit from Cobalt’s ability to maintain high sensitivity and accuracy, while operating at low power consumption. Cobalt’s design incorporates advanced processing techniques that ensure low MIPS and memory requirements, contributing to its small size and low operational costs. This strategic use of technology empowers clients to deploy wide-scale tracking applications with confidence, knowing that their solutions are backed by robust and reliable location tracking capabilities. With its state-of-the-art sensitivity and precision, Cobalt stands as a pivotal element in the evolution of GNSS technology integration into modern IoT systems.

Ubiscale
17 Categories
View Details

ntDVBS2_FEC DVB-S2 compliant FEC Codec

The ntDVBS2_FEC transmitter and receiver IPs, each instantiate an outer BCH and inner LDPC concatenated pair of encoders and decoders respectively. The Bose, Chaudhuri, and Hocquenghem (BCH) codes are the largest category of the powerful error-correction cyclic codes and belong to the block codes that are a generalization of the Hamming codes for multiple-error corrections. The Low Density Parity Check (LDPC) codes are powerful, capacity approaching channel codes and have exceptional error correction capabilities. The high degree of parallelism that they offer enables efficient, high throughput hardware architectures. The concatenation of these two error correction algorithms enable performance well close to the Shannon limit. The ntBCH_DVBS2 encoder performs BCH encoding to payload frames by appending calculated parity bits at the end of each frame. The ntBCH_DVBS2 decoder finds the error locations within a received frame, tries to correct them and indicates a successful or failed decoding procedure. The ntLDPC_DVBS2 IP Core is based on an implementation of QC-LDPC Quasi-Cyclic LDPC Codes. These LDPC codes are based on block-structured LDPC codes with circular block matrices. The entire parity check matrix can be partitioned into an array of block matrices; each block matrix is either a zero matrix or a right cyclic shift of an identity matrix. The parity check matrix designed in this way can be conveniently represented by a base matrix represented by cyclic shifts. The main advantage of this feature is that they offer high throughput at low implementation complexity. The ntLDPC_DVBS2 encoder IP implements a 360-bit parallel systematic LDPC IRA encoder. An off-line profiling Matlab script processes the original IRA matrices and produces a set of constants, associated with the matrix and hardcoded in the RTL encoder. Encoding is performed as a three part recursive computation process, where row sums, checksums of all rows column-wise and parity bit sums are calculated. The ntLDPC_DVBS2 decoder IP implements an approximation of the log-domain LDPC iterative decoding algorithm (Belief propagation), known as Layered Lambda-min2 Algorithm. The core is highly reconfigurable in terms of area, throughput and error correction performance trade-offs and is fully compliant to the DVB-S2 standard. Two highly complex off-line preprocessing series of procedures are performed to optimize the DVB LDPC parity check matrices to enable efficient RTL implementation. The ntLDPC_DVBS2 decoder IP implements a 360-LLR parallel systematic LDPC layered decoder. Two separate off-line profiling Matlab series of scripts are used to (a) process the original IRA matrices and produce the layered matrices equivalents (b) resolve any possible conflicts produced by the layered transformation. Each layer corresponds to 360 expanded rows of the original LDPC matrix. Each layer element corresponds to the active 360x360 shifted identity sub-matrices, within a layer. Each layer element is shifted accordingly and processed by the parallel decoding datapath unit, in order to update the layers LLR estimates and extrinsic information iteratively until the required number of decoding iterations has been run. The decoder also IP features two powerful optional early termination (ET) criteria (convergence and parity check), to maintain practically the same error correction performance, while significantly increasing its throughput rate. Additionally it reports how many decoding iterations have been performed when ET is activated, for system performance observation and calibration purposes. Finally a simple, yet robust, flow control hand-shaking mechanism is included in both IPs, which is used to communicate the IPs availability to adjacent system components. This logic is easily portable into any communication protocol, like AXI.

Noesis Technologies P.C.
Digital Video Broadcast, Error Correction/Detection
View Details

VocalFusion

VocalFusion, developed by XMOS, is a cutting-edge voice capture and processing solution designed for superior performance in far-field voice applications. This platform is acclaimed for its ability to offer crystal clear voice command accuracy, even in challenging acoustic environments. By integrating high-performance processing technology, VocalFusion sets a new standard in voice interface solutions, making it a preferred choice for smart home devices, automotive systems, and unified communication tools. One of the standout features of VocalFusion is its sophisticated audio algorithms that ensure seamless voice capture by minimizing noise and interference. These capabilities allow the platform to facilitate high-accuracy voice assistant interactions, thus enhancing the consumer experience by providing reliable, low-latency response times. The adaptability of VocalFusion's architecture supports various applications, from consumer electronics to professional conferencing systems. The integration of VocalFusion into devices enables manufacturers to offer advanced voice control functionalities, expanding the usability and interactive features of their products. Additionally, XMOS provides comprehensive support and tools for developers, ensuring that products featuring VocalFusion benefit from expedited time-to-market. Its robust performance and expansion capabilities position VocalFusion as a key player in the market for voice-controlled technologies.

XMOS Semiconductor
Audio Controller, Audio Interfaces, Audio Processor, Bluetooth, Cell / Packet, Digital Video Broadcast, H.263, Input/Output Controller, Receiver/Transmitter, USB
View Details

DVB-CID Modulator

Focused on meeting the ETSI DVB-CID carrier identification standard (EN103129), the DVB-CID Modulator integrates both modulation and channel coding functionalities into a single cohesive core. This integration is aimed at addressing specific carrier identification requirements within satellite communication systems. By streamlining these processes, the modulator enhances operational efficiencies while ensuring adherence to key industry standards. The DVB-CID Modulator effectively supports sophisticated satellite communication systems demanding reliable carrier identification capabilities.

Commsonic Ltd.
CSC, Digital Video Broadcast, DVB, Ethernet, H.265, Modulation/Demodulation, RF Modules
View Details

DVB-S2 LDPC/BCH Decoder and Encoder

The DVB-S2 LDPC-BCH block is a powerful FEC (Forward Error Correction) subsystem for Digital Video Broadcasting via Satellite. In Digital video broadcasting for digital transmission for satellite applications, a powerful FEC sub-system is needed. FEC is based on LDPC (Low-Density Parity Check) codes concatenated with BCH (Bose Chaudhuri Hocquenghem) codes, allowing Quasi Error Free operation close to the Shannon limit.

Global IP Core Sales
All Foundries
All Process Nodes
Digital Video Broadcast, Modulation/Demodulation
View Details

DVB-S2-LDPC-BCH

The DVB-S2-LDPC-BCH decoder by Wasiela is engineered to support the Digital Video Broadcasting - Satellite Second Generation (DVB-S2) standard. This IP core employs a combination of low-density parity-check (LDPC) and Bose–Chaudhuri–Hocquenghem (BCH) codes, delivering robust error correction to ensure high-quality satellite broadcasting services. Designed for applications requiring high throughput and error resilience, Wasiela’s decoder enables seamless transmission of high-definition television signals. It supports layered decoding, where an irregular parity check matrix optimizes error correction performance with minimal computational overhead. Its architecture allows for soft decision decoding, improving error correction capability in poor signal conditions, which is crucial for delivering uninterrupted satellite television services. Incorporating this decoder into satellite communication systems ensures a reduction in transmission errors, aligning with the stringent quality requirements of broadcasting networks. It supports the minimum sum algorithm, enhancing computational efficiency and providing a scalable solution for diverse broadcasting needs.

Wasiela
ATM / Utopia, Camera Interface, DDR, Digital Video Broadcast, DVB, Error Correction/Detection, H.263, H.264, Image Conversion, VC-2 HQ
View Details

DVB-S Demodulator

High-performance and versatile, the DVB-S Demodulator is designed to comply with DVB-S and DSNG satellite forward-link specifications. The core processes (A)PSK modulation schemes, suitable for both broadcast and interactive applications. This demodulator enhances signal clarity and integrity, enabling robust satellite communication operations. Its design is optimized for the demands of modern satellite broadcast environments, ensuring reliability and superior performance.

Commsonic Ltd.
Digital Video Broadcast, Ethernet, Interleaver/Deinterleaver
View Details

5G ORAN Base Station

The 5G ORAN Base Station is set to redefine the landscape of mobile networking, vastly enhancing wireless data capacity and paving the way for innovative wireless applications. This product is designed to augment connectivity in both urban and rural settings, offering robust data handling capabilities and superior performance. By incorporating open RAN technology, it facilitates interoperability and vendor-neutral platforms, promoting innovation and flexibility. This cutting-edge base station supports a plethora of applications, allowing service providers to deliver high-speed 5G connectivity tailored to specific client needs. Its advanced architecture ensures seamless integration with existing network infrastructure, streamlining the adoption of next-gen technologies. Furthermore, the base station boasts energy-efficient design principles, presenting a sustainable option for expanding mobile broadband offerings. With its modular design, the 5G ORAN Base Station is versatile and scalable, suiting a range of deployment scenarios, from dense urban centers to remote and underserved areas. The inclusion of open interface standards accelerates innovation and reduces deployment costs, offering an optimal solution for service providers aiming to maximize their 5G network investments.

Faststream Technologies
12 Categories
View Details

DVB-S2 Demodulator

Built to support the advanced DVB-S2 and DVB-S2X satellite forward-link standards, the DVB-S2 Demodulator offers high-performance functionality for modern broadcasting needs. The core is designed to efficiently process (A)PSK signals, effectively enhancing the transmission quality of both broadcast and interactive services. It is integral to operations requiring compliance with sophisticated satellite communication protocols, helping deliver consistent, high-quality broadcast content.

Commsonic Ltd.
Digital Video Broadcast, Ethernet, Interleaver/Deinterleaver
View Details

IMG CXM High-Efficiency GPU

The CXM GPU is designed for utmost efficiency and versatility, catering to a range of devices from wearable technology to smart home systems. Known for its compact design and low power consumption, it still provides significant computing power and rendering capabilities. This makes it a perfect fit for industrial applications where space and energy efficiency are crucial.

Imagination Technologies
Audio Interfaces, Digital Video Broadcast, Ethernet, GPU, H.265, Image Conversion, Peripheral Controller, Receiver/Transmitter, Vision Processor
View Details

Demodulation IP Cores

Creonic's Demodulation IP cores are crafted to provide fast synchronization and adaptive equalization, positioning them as a staple in satellite ground stations and gateway applications. These demodulators efficiently handle real-world signal conditions, supporting standards like DVB-S2X, DVB-RCS2, and CCSDS with aplomb. These IP cores are designed for flexible configuration, making them versatile tools in space communication systems where stringent standards and reliable performance are prerequisites. The robust architecture ensures optimal signal robustness, allowing for seamless data transmission even under fluctuating environmental conditions. Developers challenged with maintaining signal integrity within ground station and space gateways will benefit from Creonic's demodulation technology. The expertise embodied in these IPs assures designers of a solution that combines both cutting-edge technical finesse and practical deployment adaptability.

Creonic GmbH
2D / 3D, Digital Video Broadcast, Error Correction/Detection, Ethernet, Modulation/Demodulation
View Details
Sign up to Silicon Hub to buy and sell semiconductor IP

Sign Up for Silicon Hub

Join the world's most advanced semiconductor IP marketplace!

It's free, and you'll get all the tools you need to discover IP, meet vendors and manage your IP workflow!

No credit card or payment details required.

Sign up to Silicon Hub to buy and sell semiconductor IP

Welcome to Silicon Hub

Join the world's most advanced AI-powered semiconductor IP marketplace!

It's free, and you'll get all the tools you need to advertise and discover semiconductor IP, keep up-to-date with the latest semiconductor news and more!

Plus we'll send you our free weekly report on the semiconductor industry and the latest IP launches!

Switch to a Silicon Hub buyer account to buy semiconductor IP

Switch to a Buyer Account

To evaluate IP you need to be logged into a buyer profile. Select a profile below, or create a new buyer profile for your company.

Add new company

Switch to a Silicon Hub buyer account to buy semiconductor IP

Create a Buyer Account

To evaluate IP you need to be logged into a buyer profile. It's free to create a buyer profile for your company.

Chatting with Volt